TensorFlow Lite v3获得的tflite模型部署到esp32中,其中输入为24维的传感器数据,输出总为8维度,包括4维的action_mean和4维的std。给出详细代码
时间: 2024-05-05 14:22:36 浏览: 300
以下是一个简单的示例代码,展示如何在ESP32上使用TensorFlow Lite v3部署tflite模型,其中输入为24维的传感器数据,输出总为8维度,包括4维的action_mean和4维的std。
```c++
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// Replace with your input and output tensor names
const char* INPUT_TENSOR_NAME = "input";
const char* OUTPUT_TENSOR_NAME = "output";
// Replace with the path to your model
const char* MODEL_FILENAME = "/path/to/your/model.tflite";
// Define the input and output tensor shapes
const int NUM_INPUTS = 1;
const int INPUT_WIDTH = 24;
const int INPUT_HEIGHT = 1;
const int INPUT_CHANNELS = 1;
const TfLiteIntArray* INPUT_DIMS = TfLiteIntArrayCreate(4);
TfLiteTensor* input = nullptr;
const int NUM_OUTPUTS = 1;
const int OUTPUT_WIDTH = 8;
const int OUTPUT_HEIGHT = 1;
const int OUTPUT_CHANNELS = 1;
const TfLiteIntArray* OUTPUT_DIMS = TfLiteIntArrayCreate(4);
TfLiteTensor* output = nullptr;
// Define the error reporter
tflite::MicroErrorReporter micro_error_reporter;
// Define the model
const tflite::Model* model = nullptr;
// Define the interpreter
tflite::MicroInterpreter* interpreter = nullptr;
// Define the op resolver
tflite::MicroMutableOpResolver<6> micro_op_resolver;
// Define the input data buffer
float input_data[INPUT_WIDTH];
// Define the output data buffer
float output_data[OUTPUT_WIDTH];
void setup() {
// Initialize the input and output tensor shapes
TfLiteIntArray* input_dims = TfLiteIntArrayCreate(4);
TfLiteIntArray* output_dims = TfLiteIntArrayCreate(4);
input_dims->data[0] = NUM_INPUTS;
input_dims->data[1] = INPUT_HEIGHT;
input_dims->data[2] = INPUT_WIDTH;
input_dims->data[3] = INPUT_CHANNELS;
output_dims->data[0] = NUM_OUTPUTS;
output_dims->data[1] = OUTPUT_HEIGHT;
output_dims->data[2] = OUTPUT_WIDTH;
output_dims->data[3] = OUTPUT_CHANNELS;
// Initialize the input and output tensors
input = interpreter->input(0);
output = interpreter->output(0);
input->type = kTfLiteFloat32;
input->dims = input_dims;
input->data.f = input_data;
output->type = kTfLiteFloat32;
output->dims = output_dims;
output->data.f = output_data;
// Load the model
model = tflite::GetModel(MODEL_FILENAME);
if (model == nullptr) {
micro_error_reporter.Report("Could not load model\n");
return;
}
// Initialize the op resolver
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::micro::Register_DEPTHWISE_CONV_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_MAX_POOL_2D,
tflite::ops::micro::Register_MAX_POOL_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
tflite::ops::micro::Register_CONV_2D());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_FULLY_CONNECTED,
tflite::ops::micro::Register_FULLY_CONNECTED());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
tflite::ops::micro::Register_SOFTMAX());
micro_op_resolver.AddBuiltin(tflite::BuiltinOperator_RESHAPE,
tflite::ops::micro::Register_RESHAPE());
// Initialize the interpreter
interpreter = new tflite::MicroInterpreter(model, micro_op_resolver,
(uint8_t*)g_interpreter_buffer,
sizeof(g_interpreter_buffer),
µ_error_reporter);
interpreter->AllocateTensors();
}
void loop() {
// Get sensor data and fill input_data buffer
// ...
// Set input tensor data
for (int i = 0; i < INPUT_WIDTH; i++) {
input_data[i] = sensor_data[i];
}
// Invoke the interpreter
interpreter->Invoke();
// Get output tensor data
float* output_data_ptr = output->data.f;
float action_mean[4], std[4];
for (int i = 0; i < OUTPUT_WIDTH; i++) {
if (i < 4) {
action_mean[i] = *(output_data_ptr + i);
} else {
std[i - 4] = *(output_data_ptr + i);
}
}
// Do something with action_mean and std
// ...
}
```
注意需要将`/path/to/your/model.tflite`替换为你的tflite模型文件的路径。此外,还需要将获取传感器数据以及处理输出数据的部分代码替换为适合你的应用程序的代码。
阅读全文