def on_message(client, userdata, msg): msg=json.loads(msg.payload) print(msg) action=msg['items']['action']['value'] if action == '0': SSR.start_action_thread() SSR.runAction(action) SSR.change_action_value('11',1) else: SSR.runAction(action)语法错误

时间: 2024-01-12 16:03:49 浏览: 86
这段代码中的语法错误是缩进错误。请参考下面的代码修复此问题: ``` def on_message(client, userdata, msg): msg = json.loads(msg.payload) print(msg) action = msg['items']['action']['value'] if action == '0': SSR.start_action_thread() SSR.runAction(action) SSR.change_action_value('11', 1) else: SSR.runAction(action) ``` 这是一个 MQTT 消息回调函数,当接收到消息时会被调用。函数中首先将消息的载荷解析为 JSON 格式,并打印出来。然后从消息中提取出 `action` 的值,根据这个值来执行不同的动作。如果 `action` 的值是字符串 `'0'`,则启动一个新线程执行动作,运行动作,修改动作的值为 `'11'`,否则只是运行动作。
相关问题

补全下面代码中模型预测部分import paho.mqtt.client as mqtt import numpy as np import json import tensorflow as tf from tensorflow.python.keras.backend import set_session model = tf.keras.models.load_model('flowers.hd5') classes=["daisy","dandelion","roses","sunflowers","tulips"] def on_connect(client,userdata,flags,rc): if rc==0: print("successfully connected to broker.") client.subscribe("Group_04/IMAGE/classify") else: print("Connection failed with code: %d." %rc) def classify_flower(filename,data): print("Start classifying") model.predict(data) print("Done.") return {"filename":filename,"prediction":classes[win],"score":0.99,"index":win} def on_message(client,userdata,msg): recv_dict=json.loads(msg.payload) img_data=np.array(recv_dict["data"]) result=classify_flower(recv_dict["filename"],img_data) print("Sending results: ",result) client.publish("Group_04/IMAGE/predict",json.dumps(result)) def setup(hostname): client=mqtt.Client() client.on_connect=on_connect client.on_message=on_message client.connect(hostname) client.loop_start() return client def main(): model = tf.keras.models.load_model('flowers.hd5') client=setup("172.17.0.3") for filename in os.listdir(samples_dir): file_path=os.path.join(samples_dir,filename) classify_flower(file_path) while True: pass if __name__=='__main__': main()

补全代码中的模型预测部分如下所示: ```python def classify_flower(filename, data): print("Start classifying") # 预处理图像数据 processed_img = preprocess_image(data) # 将图像数据转换为模型可接受的输入格式 input_data = convert_to_model_input(processed_img) # 使用模型进行分类 prediction = model.predict(input_data) # 根据预测结果获取最高概率的类别索引 win = np.argmax(prediction) print("Done.") # 构造结果字典 result = {"filename": filename, "prediction": classes[win], "score": prediction[0][win], "index": win} return result ``` 在这个补全的代码中,我们首先对图像数据进行预处理,然后将其转换为模型可接受的输入格式。接下来,我们使用加载的模型对输入数据进行预测,并通过 `np.argmax` 函数获取最高概率的类别索引。最后,我们构造一个结果字典,包含文件名、预测类别、预测得分和类别索引,并将其返回。 请确保在补全代码之前已经定义了 `preprocess_image` 和 `convert_to_model_input` 函数来进行图像数据的预处理和转换。 希望这个补全的代码对你有所帮助!如果还有其他问题,请随时提问。

def on_message(client, userdata, msg): msg = json.loads(msg.payload) print(msg) action = msg['items']['action']['value'] if action[2] == '36': SSR.start_action_thread() SSR.runAction(action) SSR.change_action_value('11', 1) else: SSR.runAction(action)怎么取action值

在这段代码中,`msg`是一个JSON格式的消息,需要使用`json.loads()`方法将其转换为Python字典对象。然后,可以使用`msg['items']['action']['value']`来获取`action`值。 所以,要取出`action`的值可以使用如下代码: ``` msg = json.loads(msg.payload) action = msg['items']['action']['value'] ``` 这将把`action`的值存储在`action`变量中,可以在后续的代码中使用。
阅读全文

相关推荐

把这段代码转化为python代码(package service import ( "encoding/json" "errors" "fmt" "gin-syudy/api/device/req" "gin-syudy/define" "gin-syudy/models" "gin-syudy/mqtt" "gin-syudy/tools/resp" "gin-syudy/utils" mq "github.com/eclipse/paho.mqtt.golang" "github.com/gin-gonic/gin" "log" "net/http" "strconv" "time" ) // DeviceController 控制设备 // @BasePath /api/v1 // @Description 启动对应设备 // @Tags 启动设备 // @param identity query string false "Identity" // @param controllerId query string false "controllerId" // @param controlState query string false "controlState" // @Success 200 {object} resp.Response "{"code":200,"data":[...]}" // @Failure 502 {object} resp.Response "{"code":502,"data":[...]}" // @Router /api/v1/device/start [Post] func DeviceController(c *gin.Context) { device := new(models.DeviceBasic) write := new(mqtt.Write) device.Identity = c.Query("identity") id, _ := strconv.Atoi(c.Query("controllerId")) fmt.Println(id) state, _ := strconv.Atoi(c.Query("controllerState")) fmt.Println(state) write.Id = uint32(id) write.State = uint32(state) if device.Identity == "" { resp.RespFail(c, http.StatusBadGateway, errors.New("必填参数为空"), resp.FoundFail) return } deviceBasic := device.GetTopicByIdentity() subTopic := "Device/" + deviceBasic.ItemName + "/" + deviceBasic.BridgeName + "/control" + deviceBasic.Secret fmt.Println(subTopic) sendTopic := "Host/" + deviceBasic.ItemName + "/" + deviceBasic.BridgeName + "/control" + deviceBasic.Secret fmt.Println(sendTopic) dataChan := make(chan *mqtt.StartDataResp, 1) mqtt.SubscribeMessage(subTopic, func(client mq.Client, message mq.Message) { fmt.Printf("MESSAGE : %s\n", message.Payload()) fmt.Printf("TOPIC : %s\n", message.Topic()) subscribeStartData := new(mqtt.StartDataResp) err := json.Unmarshal(message.Payload(), &subscribeStartData) if err != nil { resp.RespFail(c, http.StatusBadGateway, err, "回调函数格式不正确") return } dataChan <- subscribeStartData }) startData := new(mqtt.StartData) startData.SampTime = time.Now().String() startData.CommandID = utils.GetUUid() startData.Write = write data, _ := json.Marshal(startData) err := mqtt.SendMessage(sendTopic, data) if err != nil { resp.RespFail(c, http.StatusBadGateway, err, resp.FoundFail) return } responseMessage := <-dataChan err, _ = mqtt.Unsubscribe(sendTopic) if err != nil { resp.RespFail(c, http.StatusBadGateway, err, "取消订阅失败") return } resp.RespOK(c, responseMessage, "控制成功") })

Exception in thread Thread-9: Traceback (most recent call last): File "C:\ProgramData\Anaconda3\lib\threading.py", line 973, in _bootstrap_inner self.run() File "C:\ProgramData\Anaconda3\lib\threading.py", line 910, in run self._target(*self._args, **self._kwargs) File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 3591, in _thread_main self.loop_forever(retry_first_connection=True) File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 1756, in loop_forever rc = self._loop(timeout) File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 1164, in _loop rc = self.loop_read() File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 1556, in loop_read rc = self._packet_read() File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 2439, in _packet_read rc = self._packet_handle() File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 3033, in _packet_handle return self._handle_publish() File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 3327, in _handle_publish self._handle_on_message(message) File "C:\ProgramData\Anaconda3\lib\site-packages\paho\mqtt\client.py", line 3570, in _handle_on_message on_message(self, self._userdata, message) File "F:\2022-2023(秋)课程\大三下\物联网开发\实验七\7.py", line 40, in on_message msgstr=msg.payload.decode('utf-8') UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa1 in position 1: invalid start byte /device01/control b'{\xa1\xb0status": 1}'

大家在看

recommend-type

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测['Drowning', 'Person out of water', 'Swimming'] 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、摄像头实时画面 【数据集】 本项目使用的数据集下载地址为: https://download.csdn.net/download/DeepLearning_/89398245 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
recommend-type

SPiiPlus ACSPL+ Command & Variable Reference Guide.pdf

SPiiPlus ACSPL+驱动器编程命令说明书。驱动器编程命令语言说明。可参看驱动器编程。SPiiPlus ACSPL+ Command & Variable Reference Guide
recommend-type

论文研究 - 基于UPQC的电能质量模糊控制器的实现。

本文介绍了有关统一电能质量调节器(UPQC)的总体检查,以在电气系统的配电级别上激发电能问题。 如今,电力电子研究已经增加了电能质量研究的重要性,对于具体示例,定制功率设备(CPD)和柔性交流输电位置(FACTS)设备而言,这非常重要。 本文提供的方法利用统一电能质量调节器(UPQC)的串联和并联补偿器,在电压波动时与源电流同相注入补偿电压。 基于模糊逻辑控制器,研究了UPQC两种结构在左,右分流(L-UPQC)和右-分流(R-UPQC)的执行情况,以提高单个馈线配电系统的电能质量价值。通过MATLAB / Simulink编程。 这项研究分析了各种电能质量问题。 最后,在此建议的电源系统中,右分流UPQC的性能优于。
recommend-type

ChinaTest2013-测试人的能力和发展-杨晓慧

测试人的能力和发展-杨晓慧(华为)--ChinaTest2013大会主题演讲PPT。
recommend-type

Pattern Recognition and Machine Learning习题答案(英文)

Pattern Recognition and Machine Learning习题答案(英文)

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.