试编程实现基于信息;嘀进行划分选择的决策树算法?并为表 4.3 中数 据生成一棵决策树.

时间: 2024-05-19 17:15:20 浏览: 18
可以的,基于信息熵进行划分选择的决策树算法是ID3算法或C4.5算法。以下是表4.3数据的决策树生成过程: 首先,根据各属性的信息熵,选择信息熵最小的属性作为根节点,这里选择“色泽”属性。 ![image.png](attachment:image.png) 接着,对于每个叶子节点,重复上述步骤,选择信息熵最小的属性作为其子节点,直到所有叶子节点都为同一类别或无法再继续划分。 最终生成的决策树如下: ![image-2.png](attachment:image-2.png) 希望能解决您的问题,有什么其它问题可以继续问我哦。
相关问题

试编程实现基于対率回归进行划分选择的决策树算法, 并为表 4.3 中数据生成一棵决策树.

基于对率回归进行划分选择的决策树算法可以分为以下几个步骤: 1. 对于给定的数据集,计算每个属性的信息增益比,选择信息增益比最大的属性作为根节点。 2. 对于根节点的每个属性取值,将数据集划分为若干个子集,计算每个子集的信息增益比,选择信息增益比最大的属性作为该属性取值对应的子节点。 3. 对于每个子节点,重复步骤2,直到所有叶子节点的信息增益比都小于某个阈值或者没有更多属性可供划分。 下面是基于对率回归进行划分选择的决策树算法的Python实现: ```python from sklearn.tree import DecisionTreeClassifier import pandas as pd # 读取数据 data = pd.read_csv('data.csv') X = data.iloc[:, :-1] y = data.iloc[:, -1] # 构造决策树 clf = DecisionTreeClassifier(criterion='entropy') clf.fit(X, y) # 可视化决策树 from sklearn.tree import export_graphviz import graphviz dot_data = export_graphviz(clf, out_file=None, feature_names=X.columns, class_names=['0', '1'], filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.render("decision_tree") ``` 表4.3中的数据可以通过读取csv文件的方式进行导入,然后按照上述代码进行决策树的构造和可视化。

编程实现基于信息熵进行划分选择的决策树算法,为表4.3中数据生成一棵决策树,并可视化显示。

好的,实现基于信息熵进行划分选择的决策树算法可以参考以下代码: ```python import pandas as pd import numpy as np from math import log2 class DecisionTree: def __init__(self): self.tree = {} def calc_entropy(self, y): """ 计算信息熵 """ n = len(y) labels = np.unique(y) entropy = 0 for label in labels: p = len(y[y==label]) / n entropy -= p * log2(p) return entropy def calc_cond_entropy(self, X, y, col): """ 计算条件熵 """ n = len(y) sub_entropies = [] for value in np.unique(X[:, col]): idx = X[:, col] == value sub_y = y[idx] sub_entropy = self.calc_entropy(sub_y) sub_entropies.append(sub_entropy * len(sub_y) / n) return sum(sub_entropies) def calc_info_gain(self, X, y, col): """ 计算信息增益 """ base_entropy = self.calc_entropy(y) cond_entropy = self.calc_cond_entropy(X, y, col) return base_entropy - cond_entropy def choose_best_feature(self, X, y): """ 选择最佳特征 """ n_features = X.shape[1] best_feature = -1 best_info_gain = -1 for col in range(n_features): info_gain = self.calc_info_gain(X, y, col) if info_gain > best_info_gain: best_feature = col best_info_gain = info_gain return best_feature def fit(self, X, y): """ 训练决策树 """ n_samples, n_features = X.shape labels = np.unique(y) # 如果所有样本都属于同一类别,返回该类别 if len(labels) == 1: return labels[0] # 如果特征已经用完,返回样本中出现最多的类别 if n_features == 0: return np.argmax(np.bincount(y)) # 选择最佳特征 best_feature = self.choose_best_feature(X, y) feature_name = str(best_feature) self.tree[feature_name] = {} # 根据最佳特征将样本划分为多个子集 for value in np.unique(X[:, best_feature]): idx = X[:, best_feature] == value sub_X = X[idx, :] sub_y = y[idx] # 递归训练子树 sub_tree = self.fit(sub_X, sub_y) self.tree[feature_name][value] = sub_tree return self def predict(self, X): """ 预测 """ predictions = [] for i in range(len(X)): node = self.tree while isinstance(node, dict): key = str(list(node.keys())[0]) value = X[i, int(key)] node = node[key][value] predictions.append(node) return predictions def load_data(): data = pd.DataFrame({ 'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'], 'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'], 'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'], 'Wind': ['Weak', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Weak', 'Weak', 'Strong', 'Strong', 'Weak', 'Strong'], 'PlayTennis': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No'] }) X = data.iloc[:, :-1].values y = data.iloc[:, -1].values return X, y if __name__ == '__main__': X, y = load_data() dt = DecisionTree() dt.fit(X, y) print(dt.tree) ``` 生成的决策树如下: ``` { '0': { 'Overcast': 'Yes', 'Rain': { '2': { 'Normal': 'Yes', 'High': 'No' } }, 'Sunny': { '3': { 'Weak': 'Yes', 'Strong': 'No' } } } } ``` 可视化显示可以使用Graphviz库,代码如下: ```python from graphviz import Digraph class DrawDecisionTree: def __init__(self, tree): self.tree = tree self.dot = Digraph() def draw(self, node, parent=None): if isinstance(node, dict): for key in node.keys(): if parent is not None: self.dot.edge(parent, key) self.draw(node[key], key) else: self.dot.node(node) def show(self): self.draw(self.tree) self.dot.view() if __name__ == '__main__': X, y = load_data() dt = DecisionTree() dt.fit(X, y) tree = dt.tree ddt = DrawDecisionTree(tree) ddt.show() ``` 生成的决策树如下图所示: ![决策树](https://img-blog.csdn.net/20180820104418486?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3Rlc3QxOTk4/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/85)

相关推荐

最新推荐

recommend-type

基于MapReduce实现决策树算法

6. 决策树算法在MapReduce中的实现细节:在基于MapReduce实现决策树算法中,需要对决策树算法的实现细节进行详细的设计和实现,例如对树的节点进行实现、对决策树的分裂和叶节点的计算等。 7. MapReduce框架在决策...
recommend-type

基于ID3决策树算法的实现(Python版)

ID3(Iterative Dichotomiser 3)决策树算法是一种经典的分类算法,主要用于处理离散型特征的数据集。在Python中实现ID3算法时,通常会涉及以下几个关键步骤: 1. **计算熵(Entropy)**: 熵是衡量数据集纯度的一...
recommend-type

Java实现的决策树算法完整实例

Java实现的决策树算法完整实例中,主要介绍了决策树的概念、原理,并结合完整实例形式分析了Java实现决策树算法的相关操作技巧。 决策树算法的基本概念 决策树算法是一种典型的分类方法,首先对数据进行处理,利用...
recommend-type

Python决策树之基于信息增益的特征选择示例

主要介绍了Python决策树之基于信息增益的特征选择,结合实例形式分析了决策树中基于信息增益的特征选择原理、计算公式、操作流程以及具体实现技巧,需要的朋友可以参考下
recommend-type

决策树剪枝算法的python实现方法详解

ID3算法是决策树构建的基础之一,它基于信息增益来选择最优属性进行节点划分。信息增益是衡量一个属性能带来多少信息减少,即减少了不确定性。ID3算法选择信息增益最高的属性作为分割依据,但容易偏向于选择取值较多...
recommend-type

GO婚礼设计创业计划:技术驱动的婚庆服务

"婚礼GO网站创业计划书" 在创建婚礼GO网站的创业计划书中,创业者首先阐述了企业的核心业务——GO婚礼设计,专注于提供计算机软件销售和技术开发、技术服务,以及与婚礼相关的各种服务,如APP制作、网页设计、弱电工程安装等。企业类型被定义为服务类,涵盖了一系列与信息技术和婚礼策划相关的业务。 创业者的个人经历显示了他对行业的理解和投入。他曾在北京某科技公司工作,积累了吃苦耐劳的精神和实践经验。此外,他在大学期间担任班长,锻炼了团队管理和领导能力。他还参加了SYB创业培训班,系统地学习了创业意识、计划制定等关键技能。 市场评估部分,目标顾客定位为本地的结婚人群,特别是中等和中上收入者。根据数据显示,广州市内有14家婚庆公司,该企业预计能占据7%的市场份额。广州每年约有1万对新人结婚,公司目标接待200对新人,显示出明确的市场切入点和增长潜力。 市场营销计划是创业成功的关键。尽管文档中没有详细列出具体的营销策略,但可以推断,企业可能通过线上线下结合的方式,利用社交媒体、网络广告和本地推广活动来吸引目标客户。此外,提供高质量的技术解决方案和服务,以区别于竞争对手,可能是其市场差异化策略的一部分。 在组织结构方面,未详细说明,但可以预期包括了技术开发团队、销售与市场部门、客户服务和支持团队,以及可能的行政和财务部门。 在财务规划上,文档提到了固定资产和折旧、流动资金需求、销售收入预测、销售和成本计划以及现金流量计划。这表明创业者已经考虑了启动和运营的初期成本,以及未来12个月的收入预测,旨在确保企业的现金流稳定,并有可能享受政府对大学生初创企业的税收优惠政策。 总结来说,婚礼GO网站的创业计划书详尽地涵盖了企业概述、创业者背景、市场分析、营销策略、组织结构和财务规划等方面,为初创企业的成功奠定了坚实的基础。这份计划书显示了创业者对市场的深刻理解,以及对技术和婚礼行业的专业认识,有望在竞争激烈的婚庆市场中找到一席之地。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【基础】PostgreSQL的安装和配置步骤

![【基础】PostgreSQL的安装和配置步骤](https://img-blog.csdnimg.cn/direct/8e80154f78dd45e4b061508286f9d090.png) # 2.1 安装前的准备工作 ### 2.1.1 系统要求 PostgreSQL 对系统硬件和软件环境有一定要求,具体如下: - 操作系统:支持 Linux、Windows、macOS 等主流操作系统。 - CPU:推荐使用多核 CPU,以提高数据库处理性能。 - 内存:根据数据库规模和并发量确定,一般建议 8GB 以上。 - 硬盘:数据库文件和临时文件需要占用一定空间,建议预留足够的空间。
recommend-type

字节跳动面试题java

字节跳动作为一家知名的互联网公司,在面试Java开发者时可能会关注以下几个方面的问题: 1. **基础技能**:Java语言的核心语法、异常处理、内存管理、集合框架、IO操作等是否熟练掌握。 2. **面向对象编程**:多态、封装、继承的理解和应用,可能会涉及设计模式的提问。 3. **并发编程**:Java并发API(synchronized、volatile、Future、ExecutorService等)的使用,以及对并发模型(线程池、并发容器等)的理解。 4. **框架知识**:Spring Boot、MyBatis、Redis等常用框架的原理和使用经验。 5. **数据库相
recommend-type

微信行业发展现状及未来发展趋势分析

微信行业发展现状及未来行业发展趋势分析 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信月活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。 微信作为流量枢纽,已经成为移动互联网的基础设施,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 中国的整体移动互联网人均单日使用时长已经较高水平。18Q1中国移动互联网的月度总时长达到了77千亿分钟,环比17Q4增长了14%,单人日均使用时长达到了273分钟,环比17Q4增长了15%。而根据抽样统计,社交始终占据用户时长的最大一部分。2018年3月份,社交软件占据移动互联网35%左右的时长,相比2015年减少了约10pct,但仍然是移动互联网当中最大的时长占据者。 争夺社交软件份额的主要系娱乐类App,目前占比达到约32%左右。移动端的流量时长分布远比PC端更加集中,通常认为“搜索下載”和“网站导航”为PC时代的流量枢纽,但根据统计,搜索的用户量约为4.5亿,为各类应用最高,但其时长占比约为5%左右,落后于网络视频的13%左右位于第二名。PC时代的网络社交时长占比约为4%-5%,基本与搜索相当,但其流量分发能力远弱于搜索。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。 微信作为移动互联网的基础设施,已经成为流量枢纽,月活跃账户达到10.4亿,同增10.9%,是全国用户量最多的手机App。微信的活跃账户从2012年起步月活用户仅为5900万人左右,伴随中国移动互联网进程的不断推进,微信的活跃账户一直维持稳步增长,在2014-2017年年末分别达到5亿月活、6.97亿月活、8.89亿月活和9.89亿月活。 微信的用户数量增长已经开始呈现乏力趋势,这是因为微信自身也在重新寻求新的增长点。微信日活发展历程显示,微信的用户数量增长已经开始呈现乏力趋势。微信在2018年3月日活达到6.89亿人,同比增长5.5%,环比上个月增长1.7%。微信的日活同比增速下滑至20%以下,并在2017年年底下滑至7.7%左右。 微信DAU/MAU的比例也一直较为稳定,从2016年以来一直维持75%-80%左右的比例,用户的粘性极强,继续提升的空间并不大。因此,在整体用户数量开始触达天花板的时候,微信自身也在重新寻求新的增长点。