求解TSP问题的蚁群算法使用OpenMP并行化处理代码
时间: 2023-08-25 19:06:25 浏览: 207
用蚁群算法解决TSP问题
当使用蚁群算法求解TSP问题时,可以使用OpenMP来并行化处理代码。下面是一个使用OpenMP并行化处理蚁群算法的示例代码:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <omp.h>
const int MAX_ANTS = 100; // 最大蚂蚁数量
const int MAX_ITERATIONS = 100; // 最大迭代次数
const double ALPHA = 1.0; // 信息素重要程度因子
const double BETA = 2.0; // 启发式因子
const double RHO = 0.5; // 信息素蒸发系数
const double Q = 100.0; // 信息素增加强度系数
// 城市坐标结构体
struct City {
double x, y;
};
// 计算两个城市间的距离
double distance(const City& city1, const City& city2) {
double dx = city1.x - city2.x;
double dy = city1.y - city2.y;
return std::sqrt(dx*dx + dy*dy);
}
// 蚂蚁类
class Ant {
public:
Ant(const std::vector<City>& cities) : cities(cities), numCities(cities.size()), path(numCities) {
for (int i = 0; i < numCities; ++i) {
path[i] = i;
}
std::random_shuffle(path.begin(), path.end()); // 随机初始化路径
}
void findPath() {
while (pathIndex < numCities - 1) {
int nextCity = selectNextCity();
path[pathIndex + 1] = nextCity;
visited[nextCity] = true;
pathIndex++;
}
pathLength = calculatePathLength();
}
double calculatePathLength() {
double length = 0.0;
for (int i = 0; i < numCities - 1; ++i) {
length += distance(cities[path[i]], cities[path[i + 1]]);
}
length += distance(cities[path[numCities - 1]], cities[path[0]]);
return length;
}
int selectNextCity() {
int currentCity = path[pathIndex];
double sum = 0.0;
double probabilities[numCities];
for (int i = 0; i < numCities; ++i) {
if (visited[i]) {
probabilities[i] = 0.0;
} else {
probabilities[i] = std::pow(pheromone[currentCity][i], ALPHA) * std::pow(1.0 / distance(cities[currentCity], cities[i]), BETA);
sum += probabilities[i];
}
}
double rouletteWheel = static_cast<double>(rand()) / (RAND_MAX + 1.0);
double rouletteSum = 0.0;
for (int i = 0; i < numCities; ++i) {
if (visited[i]) {
continue;
}
rouletteSum += probabilities[i] / sum;
if (rouletteSum >= rouletteWheel) {
return i;
}
}
return -1;
}
void updatePheromone() {
for (int i = 0; i < numCities; ++i) {
for (int j = 0; j < numCities; ++j) {
pheromone[i][j] *= (1.0 - RHO);
}
}
for (int i = 0; i < numCities - 1; ++i) {
int city1 = path[i];
int city2 = path[i + 1];
pheromone[city1][city2] += Q / pathLength;
pheromone[city2][city1] += Q / pathLength;
}
}
std::vector<int> getPath() const {
return path;
}
double getPathLength() const {
return pathLength;
}
private:
const std::vector<City>& cities;
const int numCities;
std::vector<int> path;
int pathIndex = 0;
std::vector<bool> visited = std::vector<bool>(numCities, false);
double pathLength = 0.0;
};
int main() {
std::vector<City> cities = { {1.0, 1.0}, {2.0, 3.0}, {5.0, 8.0}, {3.0, 6.0}, {4.0, 7.0} };
int numCities = cities.size();
std::vector<std::vector<double>> pheromone(numCities, std::vector<double>(numCities, 1.0));
double shortestPathLength = std::numeric_limits<double>::max();
std::vector<int> shortestPath;
#pragma omp parallel for shared(shortestPathLength, shortestPath)
for (int i = 0; i < MAX_ANTS; ++i) {
Ant ant(cities);
ant.findPath();
#pragma omp critical
{
if (ant.getPathLength() < shortestPathLength) {
shortestPathLength = ant.getPathLength();
shortestPath = ant.getPath();
}
}
}
std::cout << "Shortest path: ";
for (int i = 0; i < numCities; ++i) {
std::cout << shortestPath[i] << " ";
}
std::cout << std::endl;
std::cout << "Shortest path length: " << shortestPathLength << std::endl;
return 0;
}
```
在上面的示例代码中,使用`#pragma omp parallel for`将蚂蚁的路径搜索过程并行化。在每次迭代中,每个蚂蚁都会创建一个新的路径并计算路径长度。通过使用`#pragma omp critical`来保证在更新最短路径时的线程安全。
请注意,此示例代码仅为演示目的,并没有进行任何性能优化。实际应用中,可能需要对代码进行进一步的优化以提高并行化效果和性能。
阅读全文