torch.crossentropyloss
时间: 2023-09-21 13:13:22 浏览: 95
Pytorch 的损失函数Loss function使用详解
5星 · 资源好评率100%
`torch.nn.CrossEntropyLoss` 是一个用于多分类问题的损失函数,通常用于神经网络的最后一层,结合 Softmax 函数使用。它将 Softmax 的输出与标签进行比较,并计算交叉熵损失。它的目标是最小化预测值与真实标签之间的交叉熵损失,从而提高模型的准确率。
具体来说,`CrossEntropyLoss` 的计算公式如下:
$loss(x, class) = -\log(\frac{\exp(x[class])}{\sum_j \exp(x[j])}) = -x[class] + \log(\sum_j \exp(x[j]))$
其中,$x$ 是模型输出的原始值,$class$ 是真实标签的索引。`CrossEntropyLoss` 可以通过 `torch.nn.functional.cross_entropy` 或 `torch.nn.CrossEntropyLoss` 调用。
阅读全文