python写一个商旅问题求解
时间: 2023-10-10 09:07:58 浏览: 80
Python实现 采用模拟退火算法求解商旅问题
商旅问题是指在给定的一组城市中,求出一条经过每个城市恰好一次的最短路径。这是一个NP难问题,因此我们一般采用启发式算法来解决。
下面是一个Python实现的商旅问题求解程序,使用了遗传算法:
```python
import random
# 城市坐标
city_pos = [
(60, 200), (180, 200), (80, 180), (140, 180), (20, 160),
(100, 160), (200, 160), (140, 140), (40, 120), (100, 120),
(180, 100), (60, 80), (120, 80), (180, 60), (20, 40),
(100, 40), (200, 40), (20, 20), (60, 20), (160, 20)
]
# 城市数量
city_num = len(city_pos)
# 种群数量
pop_size = 100
# 迭代次数
max_iter = 500
# 交叉概率
crossover_prob = 0.8
# 变异概率
mutation_prob = 0.1
# 个体编码长度
chromosome_length = city_num
# 计算城市之间的距离
def dist(city1, city2):
return ((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2) ** 0.5
# 计算路径长度
def path_length(path):
length = 0
for i in range(city_num):
length += dist(city_pos[path[i]], city_pos[path[(i+1)%city_num]])
return length
# 初始化种群
def init_population():
population = []
for i in range(pop_size):
chromosome = list(range(city_num))
random.shuffle(chromosome)
population.append(chromosome)
return population
# 选择
def selection(population):
fitness_list = [1.0/path_length(chromosome) for chromosome in population]
total_fitness = sum(fitness_list)
accum_fitness = [sum(fitness_list[:i+1])/total_fitness for i in range(pop_size)]
selection_results = []
for i in range(pop_size):
r = random.random()
for j in range(pop_size):
if accum_fitness[j] > r:
selection_results.append(population[j])
break
return selection_results
# 交叉
def crossover(parent1, parent2):
if random.random() > crossover_prob:
return parent1
pos1 = random.randint(0, chromosome_length-1)
pos2 = random.randint(0, chromosome_length-1)
if pos1 > pos2:
pos1, pos2 = pos2, pos1
child = [-1] * chromosome_length
for i in range(pos1, pos2+1):
child[i] = parent1[i]
index = pos2 + 1
for i in range(chromosome_length):
if parent2[i] not in child:
child[index] = parent2[i]
index = (index + 1) % chromosome_length
return child
# 变异
def mutation(chromosome):
if random.random() > mutation_prob:
return chromosome
pos1 = random.randint(0, chromosome_length-1)
pos2 = random.randint(0, chromosome_length-1)
chromosome[pos1], chromosome[pos2] = chromosome[pos2], chromosome[pos1]
return chromosome
# 遗传算法
def genetic_algorithm():
population = init_population()
for i in range(max_iter):
population = selection(population)
new_population = []
for j in range(pop_size):
parent1 = random.choice(population)
parent2 = random.choice(population)
child = crossover(parent1, parent2)
child = mutation(child)
new_population.append(child)
population = new_population
best_chromosome = min(population, key=path_length)
return best_chromosome
# 测试
best_path = genetic_algorithm()
print("最短路径: ", best_path)
print("路径长度: ", path_length(best_path))
```
这个程序使用遗传算法来求解商旅问题,其中`city_pos`是城市坐标,`city_num`是城市数量,`pop_size`是种群数量,`max_iter`是迭代次数,`crossover_prob`是交叉概率,`mutation_prob`是变异概率,`chromosome_length`是个体编码长度。程序的输出为最短路径和路径长度。
阅读全文