我想用RNN的LSTM生成一段音乐,输入音乐是一个列表,输出一段音乐
时间: 2024-02-11 12:05:55 浏览: 249
好的,你需要用Python编写一个LSTM神经网络生成音乐的代码。这个任务需要涉及到数据预处理、模型建立、模型训练和音乐生成四个部分。以下是一个基本的模板,你可以根据自己的需求进行修改和补充。
```python
import numpy as np
from music21 import midi
from keras.models import Sequential
from keras.layers import LSTM, Dense, Activation
# 数据预处理
def get_data(data_path):
midi_data = midi.MidiFile()
midi_data.open(data_path)
midi_data.read()
midi_data.close()
notes = []
for element in midi_data.flat:
if isinstance(element, midi.Note):
notes.append(str(element.pitch))
elif isinstance(element, midi.Chord):
notes.append('.'.join(str(n) for n in element.normalOrder))
# 将音符转换成数字
note_to_int = dict((note, number) for number, note in enumerate(sorted(set(notes))))
input_size = len(set(notes))
sequence_length = 100
network_input = []
network_output = []
for i in range(0, len(notes) - sequence_length, 1):
sequence_in = notes[i:i + sequence_length]
sequence_out = notes[i + sequence_length]
network_input.append([note_to_int[char] for char in sequence_in])
network_output.append(note_to_int[sequence_out])
n_patterns = len(network_input)
# 将输入转化为LSTM需要的格式
X = np.reshape(network_input, (n_patterns, sequence_length, 1))
X = X / float(input_size)
y = np_utils.to_categorical(network_output)
return X, y, input_size
# 模型建立
def create_model(X, input_size):
model = Sequential()
model.add(LSTM(512, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(512))
model.add(Dense(256))
model.add(Dropout(0.3))
model.add(Dense(input_size))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
return model
# 模型训练
def train_model(model, X, y):
model.fit(X, y, epochs=200, batch_size=128, verbose=1)
# 音乐生成
def generate_music(model, network_input, input_size, output_length):
int_to_note = dict((number, note) for number, note in enumerate(sorted(set(notes))))
# 随机选择一个网络输入
start = np.random.randint(0, len(network_input)-1)
pattern = network_input[start]
prediction_output = []
# 生成指定长度的音乐
for note_index in range(output_length):
prediction_input = np.reshape(pattern, (1, len(pattern), 1))
prediction_input = prediction_input / float(input_size)
prediction = model.predict(prediction_input, verbose=0)
index = np.argmax(prediction)
result = int_to_note[index]
prediction_output.append(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
return prediction_output
# 主函数
def main():
data_path = 'data/music.mid'
output_length = 500
X, y, input_size = get_data(data_path)
model = create_model(X, input_size)
train_model(model, X, y)
network_input = X[np.random.randint(0, len(X)-1)]
prediction_output = generate_music(model, network_input, input_size, output_length)
if __name__ == '__main__':
main()
```
注意,在上面的代码中,使用了`music21`库来读取和处理MIDI文件,因此需要先安装该库。另外,如果你的电脑不够强大,可能需要调整模型的参数和训练次数以获得更好的效果。
阅读全文