train_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='D:\\dataset\\MNIST', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) 如何将.mat形式的数据集加载为上述形式
时间: 2024-02-09 13:12:45 浏览: 150
要将.mat形式的数据集加载为PyTorch中的DataLoader格式,可以使用SciPy库中的`scipy.io.loadmat()`函数来加载.mat文件,然后将其转换为PyTorch的Tensor格式。具体代码如下:
```python
import scipy.io as sio
import torch
from torch.utils.data import DataLoader, TensorDataset
# 加载MNIST训练集和测试集
train_mat = sio.loadmat('train_data.mat')
test_mat = sio.loadmat('test_data.mat')
# 将MATLAB格式的数据转换为PyTorch的Tensor格式
train_data = torch.from_numpy(train_mat['train_data']).float()
train_labels = torch.from_numpy(train_mat['train_labels']).long()
test_data = torch.from_numpy(test_mat['test_data']).float()
test_labels = torch.from_numpy(test_mat['test_labels']).long()
# 创建PyTorch的TensorDataset
train_dataset = TensorDataset(train_data, train_labels)
test_dataset = TensorDataset(test_data, test_labels)
# 创建PyTorch的DataLoader
batch_size = 64
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
```
注意,由于MNIST数据集中的图像像素值在0到255之间,因此在将数据转换为PyTorch的Tensor格式时,需要将其除以255并转换为float类型。另外,在创建TensorDataset时,需要将标签转换为long类型,以便于后续计算交叉熵损失。
阅读全文