ros小车红绿灯识别功能代码
时间: 2023-09-30 13:05:03 浏览: 244
红绿灯识别是一个比较复杂的任务,需要用到图像处理和深度学习等技术。以下是一个简单的红绿灯识别功能的代码示例:
```python
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
class TrafficLightDetector:
def __init__(self):
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback)
self.bridge = CvBridge()
def image_callback(self, msg):
cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")
# 图像处理,提取红色区域
hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 100, 100])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([160, 100, 100])
upper_red = np.array([179, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
mask = mask1 + mask2
# 查找轮廓
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 判断是否有红色圆形
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 500:
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if len(approx) > 6:
(x, y), radius = cv2.minEnclosingCircle(cnt)
if radius > 20 and radius < 100:
cv2.circle(cv_image, (int(x), int(y)), int(radius), (0, 255, 0), 2)
rospy.loginfo('Traffic light detected')
# 通过 ROS 发布消息
# ...
# 显示图像
cv2.imshow('image', cv_image)
cv2.waitKey(1)
if __name__ == '__main__':
rospy.init_node('traffic_light_detector')
detector = TrafficLightDetector()
rospy.spin()
```
以上代码基于 ROS 框架实现,订阅相机图像,使用 OpenCV 库来提取红色区域,并查找轮廓来识别红色圆形。如果检测到红色圆形,则发布一个 ROS 消息。注意,以上代码仅供参考,具体实现需要根据实际情况进行调整和优化。
阅读全文