使用遗传算法通过java编写护士排班的代码并写出individual.calcFitness()的代码
时间: 2024-05-06 07:17:03 浏览: 89
以下是使用遗传算法编写护士排班的Java代码:
```java
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
public class NurseScheduling {
private int numNurses; // 护士数量
private int numShifts; // 班次数量
private int numDays; // 总天数
private int[][] cover; // 覆盖需求
private int popSize; // 种群大小
private double mutationRate; // 变异率
private int elitismCount; // 精英数量
private int tournamentSize; // 锦标赛选择数量
public NurseScheduling(int numNurses, int numShifts, int numDays, int[][] cover, int popSize, double mutationRate, int elitismCount, int tournamentSize) {
this.numNurses = numNurses;
this.numShifts = numShifts;
this.numDays = numDays;
this.cover = cover;
this.popSize = popSize;
this.mutationRate = mutationRate;
this.elitismCount = elitismCount;
this.tournamentSize = tournamentSize;
}
// 初始化种群
public Population initPopulation() {
Population population = new Population(this.popSize, this.numNurses);
return population;
}
// 评估个体适应度
public double calcFitness(Individual individual) {
// 初始化每个班次的被覆盖情况
int[][] shiftCover = new int[this.numShifts][this.numDays];
for (int i = 0; i < this.numShifts; i++) {
for (int j = 0; j < this.numDays; j++) {
shiftCover[i][j] = 0;
}
}
// 统计个体班次被分配情况
int[][] nurseShifts = individual.getNurseShifts();
for (int i = 0; i < this.numDays; i++) {
for (int j = 0; j < this.numNurses; j++) {
int shiftIndex = nurseShifts[i][j];
shiftCover[shiftIndex][i] += this.cover[j][i];
}
}
// 计算每个班次的被覆盖程度
double fitness = 0;
for (int i = 0; i < this.numShifts; i++) {
for (int j = 0; j < this.numDays; j++) {
int demand = this.cover[this.numNurses][j];
int cover = shiftCover[i][j];
if (cover >= demand) {
fitness += 1;
}
}
}
// 计算平均适应度
fitness /= (this.numShifts * this.numDays);
return fitness;
}
// 选择操作
public Population select(Population population) {
Population newPopulation = new Population(this.popSize, this.numNurses);
// 添加精英个体
for (int i = 0; i < this.elitismCount; i++) {
Individual elitism = population.getFittest(i);
newPopulation.setIndividual(i, elitism);
}
// 锦标赛选择
for (int i = this.elitismCount; i < this.popSize; i++) {
Individual indiv1 = tournamentSelection(population);
Individual indiv2 = tournamentSelection(population);
Individual newIndiv = crossover(indiv1, indiv2);
newPopulation.setIndividual(i, newIndiv);
}
return newPopulation;
}
// 锦标赛选择
public Individual tournamentSelection(Population population) {
Population tournament = new Population(this.tournamentSize, this.numNurses);
for (int i = 0; i < this.tournamentSize; i++) {
int randomIndex = (int) (Math.random() * population.size());
tournament.setIndividual(i, population.getIndividual(randomIndex));
}
Individual fittest = tournament.getFittest(0);
return fittest;
}
// 交叉操作
public Individual crossover(Individual indiv1, Individual indiv2) {
Individual newSol = new Individual(this.numNurses);
for (int i = 0; i < this.numDays; i++) {
if (Math.random() <= 0.5) {
newSol.setNurseShifts(i, indiv1.getNurseShifts(i));
} else {
newSol.setNurseShifts(i, indiv2.getNurseShifts(i));
}
}
return newSol;
}
// 变异操作
public Individual mutate(Individual indiv) {
Random random = new Random();
Individual newSol = new Individual(this.numNurses);
for (int i = 0; i < this.numDays; i++) {
int[] nurseShifts = indiv.getNurseShifts(i);
for (int j = 0; j < this.numNurses; j++) {
if (Math.random() <= this.mutationRate) {
nurseShifts[j] = random.nextInt(this.numShifts);
}
}
newSol.setNurseShifts(i, nurseShifts);
}
return newSol;
}
// 进化操作
public Population evolve(Population population) {
Population newPopulation = select(population);
for (int i = this.elitismCount; i < this.popSize; i++) {
newPopulation.setIndividual(i, mutate(newPopulation.getIndividual(i)));
}
return newPopulation;
}
// 执行遗传算法
public Individual geneticAlgorithm(int numGenerations) {
Population population = initPopulation();
for (int i = 0; i < numGenerations; i++) {
population = evolve(population);
}
return population.getFittest(0);
}
}
```
在上面的代码中,我们需要实现 `calcFitness()` 方法来评估个体的适应度。该方法会计算每个班次的被覆盖情况,并计算出每个班次的被覆盖程度。然后,我们将每个班次的被覆盖程度求和,再除以总班次数和总天数,得到平均适应度。
以下是 `calcFitness()` 方法的代码:
```java
public double calcFitness(Individual individual) {
// 初始化每个班次的被覆盖情况
int[][] shiftCover = new int[this.numShifts][this.numDays];
for (int i = 0; i < this.numShifts; i++) {
for (int j = 0; j < this.numDays; j++) {
shiftCover[i][j] = 0;
}
}
// 统计个体班次被分配情况
int[][] nurseShifts = individual.getNurseShifts();
for (int i = 0; i < this.numDays; i++) {
for (int j = 0; j < this.numNurses; j++) {
int shiftIndex = nurseShifts[i][j];
shiftCover[shiftIndex][i] += this.cover[j][i];
}
}
// 计算每个班次的被覆盖程度
double fitness = 0;
for (int i = 0; i < this.numShifts; i++) {
for (int j = 0; j < this.numDays; j++) {
int demand = this.cover[this.numNurses][j];
int cover = shiftCover[i][j];
if (cover >= demand) {
fitness += 1;
}
}
}
// 计算平均适应度
fitness /= (this.numShifts * this.numDays);
return fitness;
}
```
在这个方法中,我们首先初始化每个班次的被覆盖情况。然后,我们统计个体班次被分配情况,计算出每个班次在每一天的被覆盖程度。接下来,我们计算每个班次的被覆盖程度是否满足需求,并将满足需求的班次数累加。最后,我们将累加结果除以总班次数和总天数,得到平均适应度。
阅读全文