用Python 写一个基于遗传算法的排班代码
时间: 2024-02-27 12:58:56 浏览: 147
好的,我可以为您提供一个基于遗传算法的排班代码的示例。在此之前,需要明确排班的目标和限制条件,例如员工数量、工作时长、休息时间、工作日数等。
以下是一个简单的排班算法实现,使用 Python 语言编写:
```python
import random
# 员工数量
num_employees = 10
# 工作日数
num_days = 7
# 每日工作时长
work_hours = 8
# 员工列表
employees = list(range(num_employees))
# 定义基因
def create_schedule():
schedule = []
for i in range(num_days):
day_schedule = []
for j in range(num_employees):
day_schedule.append(random.randint(0, work_hours))
schedule.append(day_schedule)
return schedule
# 适应度函数
def fitness(schedule):
total_hours = 0
for i in range(num_days):
for j in range(num_employees):
total_hours += schedule[i][j]
return total_hours
# 选择函数
def selection(population):
fitness_scores = []
for individual in population:
fitness_scores.append((individual, fitness(individual)))
fitness_scores.sort(key=lambda x: x[1])
return fitness_scores[:int(len(population)*0.5)]
# 交叉函数
def crossover(individual1, individual2):
child1 = []
child2 = []
for i in range(num_days):
if i % 2 == 0:
child1.append(individual1[i])
child2.append(individual2[i])
else:
child1.append(individual2[i])
child2.append(individual1[i])
return child1, child2
# 变异函数
def mutation(individual):
for i in range(num_days):
for j in range(num_employees):
if random.random() < 0.1:
individual[i][j] = random.randint(0, work_hours)
return individual
# 遗传算法主函数
def genetic_algorithm():
population_size = 100
population = []
for i in range(population_size):
population.append(create_schedule())
for i in range(1000):
new_population = []
elites = selection(population)
for j in range(population_size - len(elites)):
parent1 = random.choice(elites)[0]
parent2 = random.choice(elites)[0]
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1)
child2 = mutation(child2)
new_population.append(child1)
new_population.append(child2)
new_population += [elite[0] for elite in elites]
population = new_population
best_individual = max(population, key=lambda x: fitness(x))
return best_individual
# 执行遗传算法
best_schedule = genetic_algorithm()
# 输出最佳排班
for i in range(num_days):
print("Day {}: {}".format(i+1, best_schedule[i]))
```
这个示例代码仅供参考,具体实现还需要根据实际情况进行调整和优化。
阅读全文