帮我用PYTHON写一个遗传退火算法
时间: 2023-05-16 10:04:27 浏览: 91
当然可以,以下是一个简单的遗传退火算法的 Python 代码:
```python
import random
import math
def simulated_annealing(cost_function, initial_solution, temperature, cooling_rate):
current_solution = initial_solution
best_solution = initial_solution
while temperature > 1e-10:
candidate_solution = current_solution[:]
index = random.randint(0, len(candidate_solution) - 1)
candidate_solution[index] += random.uniform(-1, 1)
cost_diff = cost_function(candidate_solution) - cost_function(current_solution)
if cost_diff < 0:
current_solution = candidate_solution
if cost_function(current_solution) < cost_function(best_solution):
best_solution = current_solution
else:
if random.random() < math.exp(-cost_diff / temperature):
current_solution = candidate_solution
temperature *= cooling_rate
return best_solution
# Example usage
def cost_function(x):
return sum([xi ** 2 for xi in x])
initial_solution = [random.uniform(-10, 10) for _ in range(10)]
best_solution = simulated_annealing(cost_function, initial_solution, 100, 0.95)
print(best_solution)
```
这个代码实现了一个简单的遗传退火算法,用于求解一个多元函数的最小值。在这个例子中,我们使用了一个简单的二次函数作为 cost function,但是你可以根据自己的需求来定义自己的 cost function。
阅读全文