帮我用python写一个用模拟退火算法解决tsp问题的代码
时间: 2024-05-04 16:16:38 浏览: 194
SA_TSP_模拟退火TSP_TSP问题_智能优化算法_源码
5星 · 资源好评率100%
好的,以下是用 Python 实现模拟退火算法解决 TSP 问题的代码:
```python
import math
import random
# 旅行商城市数量
NUM_CITIES = 20
# 遗传算法迭代次数
NUM_ITERATIONS = 10000
# 退火降温比率
COOLING_RATE = 0.999
# 起始温度
START_TEMPERATURE = 10000
# 初始解
initial_solution = list(range(NUM_CITIES))
# 计算距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1-x2)**2 + (y1-y2)**2)
# 初始评分函数
def initial_score(city_list):
total_distance = 0
for i in range(NUM_CITIES):
city1 = city_list[i % NUM_CITIES]
city2 = city_list[(i+1) % NUM_CITIES]
total_distance += distance(city1, city2)
return total_distance
# 产生邻居解
def generate_neighbor(city_list):
neighbor = city_list.copy()
i = random.randint(0, NUM_CITIES-1)
j = random.randint(0, NUM_CITIES-1)
neighbor[i], neighbor[j] = neighbor[j], neighbor[i]
return neighbor
# 评估函数
def evaluate(city_list, temperature):
current_score = initial_score(city_list)
neighbor = generate_neighbor(city_list)
neighbor_score = initial_score(neighbor)
delta = neighbor_score - current_score
if delta < 0:
return neighbor, neighbor_score
else:
probability = math.exp(-delta/temperature)
if random.random() < probability:
return neighbor, neighbor_score
else:
return city_list, current_score
# 模拟退火函数
def simulated_annealing():
current_solution = initial_solution
current_score = initial_score(current_solution)
temperature = START_TEMPERATURE
for i in range(NUM_ITERATIONS):
temperature *= COOLING_RATE
current_solution, current_score = evaluate(current_solution, temperature)
return current_solution, current_score
# 生成城市坐标
cities = [(random.random(), random.random()) for i in range(NUM_CITIES)]
# 模拟退火求解
solution, score = simulated_annealing()
print(cities)
print(solution)
print(score)
```
此代码实现了模拟退火算法用于解决 TSP 问题。该算法通过产生邻居解,并根据当前温度、评估函数和概率来采纳或拒绝邻居解,从而在退火过程中搜索全局最优解。
阅读全文