用python模拟退火算法去解决TSP问题的代码
时间: 2024-01-05 07:03:00 浏览: 88
模拟退火算法解决TSP
以下是使用Python实现模拟退火算法解决TSP问题的示例代码:
```python
import random
import math
def distance(point1, point2):
"""计算两点之间的距离"""
return math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
def total_distance(points, order):
"""计算路径总长度"""
dist = 0
for i in range(-1, len(points) - 1):
dist += distance(points[order[i]], points[order[i+1]])
return dist
def anneal(points, temp, temp_min, alpha):
"""模拟退火算法"""
order = list(range(len(points)))
random.shuffle(order)
current_dist = total_distance(points, order)
while temp > temp_min:
for i in range(100):
# 生成新解
new_order = order.copy()
index1, index2 = random.sample(range(len(points)), 2)
new_order[index1], new_order[index2] = new_order[index2], new_order[index1]
new_dist = total_distance(points, new_order)
# 计算能量差
delta = new_dist - current_dist
# 判断是否接受新解
if delta < 0 or math.exp(-delta / temp) > random.random():
order = new_order
current_dist = new_dist
temp *= alpha
return order
if __name__ == '__main__':
# 随机生成10个点
points = [(random.uniform(0, 1), random.uniform(0, 1)) for _ in range(10)]
# 设置初始温度、最低温度和衰减系数
temp = 100
temp_min = 0.01
alpha = 0.99
# 调用模拟退火算法求解TSP问题
order = anneal(points, temp, temp_min, alpha)
print(order)
print(total_distance(points, order))
```
代码中将距离计算、路径总长度计算、模拟退火算法三个部分分别封装成了函数。在`anneal`函数中,首先生成一个随机初始解,然后不断降温,在每个温度下进行100次新解的生成和接受过程,直到温度降到最低温度为止。最终返回最优解。在主函数中,我们随机生成了10个点,并调用`anneal`函数求解TSP问题。
阅读全文