bins = np.arange(11) # hist, _ = np.histogram(d, bins=bins)
时间: 2024-03-04 18:52:02 浏览: 65
这是使用 NumPy 库中的 arange 函数生成一个包含 11 个元素的一维数组,用于设置直方图的边界。然后使用 np.histogram 函数计算直方图,第一个参数 d 是数据,第二个参数 bins 是直方图的边界。函数返回两个值,第一个值是直方图的频数,第二个值是直方图的边界。这里使用了下划线(_)来表示返回值中的第二个值不被使用,因为我们只需要直方图的频数。
相关问题
解释每条语句作用import matplotlib.pyplot as plt import numpy as np # 解决中文显示问题 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False def main(): #主函数 total_time = 100000 # 记录骰子的结果 roll1_arr = np.random.randint(1, 7, size=total_time) roll2_arr = np.random.randint(1, 7, size=total_time) result_arr = roll1_arr + roll2_arr hist, bins = np.histogram(result_arr, bins=range(2, 14)) print(hist) print(bins) # 数据可视化 plt.hist(result_arr, bins=range(2, 14), density=1, edgecolor='black', linewidth=1, rwidth=0.5) # 设置x轴坐标点显示 tick_label = ['2点', '3点', '4点', '5点', '6点', '7点', '8点', '9点', '10点', '11点', '12点'] tick_pos = np.arange(2, 13) + 0.5 plt.xticks(tick_pos, tick_label) plt.title('骰子点数统计') plt.xlabel('点数') plt.ylabel('频率') plt.show() if __name__ == '__main__': main()
这段代码主要是用于模拟两个骰子的点数和,并对点数和进行统计和可视化。
- `import matplotlib.pyplot as plt`:导入 matplotlib 库中的 pyplot 模块,用于可视化。
- `import numpy as np`:导入 numpy 库,并给 numpy 起一个别名 np,用于生成随机数和数组处理。
- `plt.rcParams['font.sans-serif'] = ['SimHei']`:设置 matplotlib 的字体为中文宋体,用于解决中文显示问题。
- `plt.rcParams['axes.unicode_minus'] = False`:解决 matplotlib 绘图时负号 '-' 显示为方块的问题。
- `def main():`:定义主函数。
- `total_time = 100000`:设置模拟次数为 100000 次。
- `roll1_arr = np.random.randint(1, 7, size=total_time)`:通过 numpy 库中的 random 模块生成一个包含 1-6 随机数的数组 roll1_arr。
- `roll2_arr = np.random.randint(1, 7, size=total_time)`:同上,生成另一个数组 roll2_arr。
- `result_arr = roll1_arr + roll2_arr`:将两个数组对应元素相加,得到点数和数组 result_arr。
- `hist, bins = np.histogram(result_arr, bins=range(2, 14))`:使用 numpy 库中的 histogram() 方法对点数和数组进行统计,返回值为两个数组 hist 和 bins,分别表示点数和的频数和频率。
- `plt.hist(result_arr, bins=range(2, 14), density=1, edgecolor='black', linewidth=1, rwidth=0.5)`:调用 matplotlib 的 hist() 方法绘制直方图,其中 bins 参数表示直方图的边界,density 参数表示频率归一化,edgecolor 和 linewidth 参数用于设置边框颜色和宽度,rwidth 参数用于设置直方图的宽度。
- `tick_label = ['2点', '3点', '4点', '5点', '6点', '7点', '8点', '9点', '10点', '11点', '12点']`:设置 x 轴坐标点的标签。
- `tick_pos = np.arange(2, 13) + 0.5`:生成 x 轴坐标点的位置。
- `plt.xticks(tick_pos, tick_label)`:设置 x 轴坐标点的位置和标签。
- `plt.title('骰子点数统计')`:设置图表标题。
- `plt.xlabel('点数')`:设置 x 轴标签。
- `plt.ylabel('频率')`:设置 y 轴标签。
- `plt.show()`:显示图表。
- `if __name__ == '__main__':`:当作为主程序运行时,执行 main() 函数。
types = df['type'].unique() labels = types.tolist() fig = plt.figure(figsize=(8, 6)) ax = plt.subplot(111) b_num = np.arange(0, 10.5, 0.5) for t in types: ax.hist(df.loc[df['type'] == t, 'rating'], bins=b_num, rwidth=0.9, alpha=0.6, label=t, ) ax.legend() ax.set_xlabel('rating') ax.set_ylabel(r'Count(rating)') plt.show()重叠绘制直方图,输出效果达到每个间距的值是累加后的值
要实现每个间距的值是累加后的值,可以在循环中统计各个type的直方图数据,并将数据进行累加。然后将累加后的数据绘制为堆积直方图,示例代码如下:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 生成数据
df = pd.DataFrame({
'type': ['A', 'B', 'A', 'C', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C'],
'rating': [7.5, 8.2, 9.1, 6.7, 7.8, 8.5, 7.2, 8.9, 6.6, 8.3, 8.1, 7.4]
})
# 统计各个type的直方图数据,并将数据进行累加
types = df['type'].unique()
labels = types.tolist()
b_num = np.arange(0, 10.5, 0.5)
hist_data = []
for t in types:
hist, bins = np.histogram(df.loc[df['type'] == t, 'rating'], bins=b_num)
hist_data.append(hist)
hist_data = np.vstack(hist_data)
hist_data = np.cumsum(hist_data, axis=0)
# 绘制堆积直方图
fig = plt.figure(figsize=(8, 6))
ax = plt.subplot(111)
for i, t in enumerate(types):
ax.bar(b_num[:-1], hist_data[i], label=t, alpha=0.6)
ax.legend()
ax.set_xlabel('rating')
ax.set_ylabel(r'Count(rating)')
plt.show()
```
其中,`hist, bins = np.histogram(df.loc[df['type'] == t, 'rating'], bins=b_num)`用于统计各个type的直方图数据,`hist_data.append(hist)`将直方图数据进行累加,`hist_data = np.vstack(hist_data)`将数据转换为二维数组,`hist_data = np.cumsum(hist_data, axis=0)`将数据进行累加。最后使用`ax.bar(b_num[:-1], hist_data[i], label=t, alpha=0.6)`绘制堆积直方图。
阅读全文