trapz(x_vals, target_distribution(x_vals))
时间: 2023-10-26 20:06:41 浏览: 122
I'm sorry, as an AI language model, I don't have access to the specific values of x_vals and target_distribution needed to perform this calculation. Could you please provide me with those values?
相关问题
将以下代码图形用红色填充:import matlab.unittest.constraints.IsTrue; % 定义函数 y(x,k) y=@(x,k)-k.*x.*x+12.*k.*x; % 解方程,找到使白色和红色区域面积相等的k值 k_vals = linspace(-10, 10, 1000); k_val = NaN; for k = k_vals area_white = integral(@(x) y(x, k), 0, 12); x_vals = linspace(0, 12, 1000); y_vals = y(x_vals, k); area_red = trapz(x_vals(y_vals >= 0), y_vals(y_vals >= 0)); if abs( area_red) < eps(area_white) k_val = k; break; end end if isnan(k_val) disp('无法找到使白色和红色区域面积相等的k值'); else disp(['使白色和红色区域面积相等的k值:', num2str(k_val)]); end % 绘制函数图形和填充区域 x_vals = linspace(0, 12, 1000); y_vals = y(x_vals, k_val); % 第一个子图:使用 plot 函数绘制函数 y(x) subplot(1, 2, 1); plot(x_vals, y_vals); title('Function y(x)'); xlabel('x'); ylabel('y'); % 第二个子图:使用 fill 函数绘制函数 y(x),并将曲线下方区域涂成红色 subplot(1, 2, 2); plot(x_vals, y_vals); fill(x_vals(y_vals >= 0), y_vals(y_vals >= 0), 'r', 'FaceAlpha', 0.5, 'EdgeColor', 'none'); title('Area under y(x)'); xlabel('x'); ylabel('y'); sgtitle('Function and Area under y(x)'); grid on; box on;
以下是修改后的代码,将曲线下方区域涂成红色:
```matlab
import matlab.unittest.constraints.IsTrue;
% 定义函数 y(x,k)
y = @(x,k) -k.*x.*x+12.*k.*x;
% 解方程,找到使白色和红色区域面积相等的k值
k_vals = linspace(-10, 10, 1000);
k_val = NaN;
for k = k_vals
area_white = integral(@(x) y(x, k), 0, 12);
x_vals = linspace(0, 12, 1000);
y_vals = y(x_vals, k);
area_red = trapz(x_vals(y_vals >= 0), y_vals(y_vals >= 0));
if abs(area_red - area_white) < eps(area_white)
k_val = k;
break;
end
end
if isnan(k_val)
disp('无法找到使白色和红色区域面积相等的k值');
else
disp(['使白色和红色区域面积相等的k值:', num2str(k_val)]);
end
% 绘制函数图形和填充区域
x_vals = linspace(0, 12, 1000);
y_vals = y(x_vals, k_val);
% 第一个子图:使用 plot 函数绘制函数 y(x)
subplot(1, 2, 1);
plot(x_vals, y_vals);
title('Function y(x)');
xlabel('x');
ylabel('y');
% 第二个子图:使用 fill 函数绘制函数 y(x),并将曲线下方区域涂成红色
subplot(1, 2, 2);
plot(x_vals, y_vals);
hold on;
fill(x_vals(y_vals >= 0), y_vals(y_vals >= 0), 'r', 'FaceAlpha', 0.5, 'EdgeColor', 'none');
hold off;
title('Area under y(x)');
xlabel('x');
ylabel('y');
sgtitle('Function and Area under y(x)');
grid on;
box on;
```
阶跃响应=∫0_t h(x)dx在MATLAB中代码
阶跃响应函数(通常用于模拟系统对突然输入变化的响应)是指在一个时间区间`[0, t]`内,积分函数`h(x)`的累积效果。在MATLAB中,如果你有一个已知的函数`h(x)`,你可以使用积分命令`integral`或者`trapz`(如果`h(x)`是一组离散数据)来计算这个响应。
例如,如果你想计算从零到特定时间`t`的连续阶跃响应,可以这样做:
```matlab
function response = step_response(h, t)
% h 是函数值向量或连续函数 handle,t 是积分上限
if isvector(h)
response = integral(@(x) h(x), 0, t);
else
% 如果h是一个函数handle,假设它接受一个x并返回对应的y值
response = integral(@(x) feval(h, x), 0, t);
end
end
```
如果你的函数`h(x)`是一组离散数据点,使用`trapz`会更合适:
```matlab
% 假设data是时间序列值对矩阵
time = data(:, 1); % 时间数组
response = trapz(time, data(:, 2)); % 使用梯形法则积分
```
阅读全文
相关推荐















