用c++实现以下代码:分类使用的数据集为iris数据集,数据集描述信息和数据集划分信息如下: iris数据集包含3类别的数据,每类有50个样本,即整个数据集包含150个样本。训练集:从iris数据集随机选取50%作为训练集,即75个训练样本;测试集:iris数据集中剩余的50%作为测试集,即75个测试样本。 要求:编写决策树程序,使用决策树方法在上述数据进行训练测试,并给出测试结果。 注1:需要给出评价指标的测试结果:整体精度OA和类别平均精度AA。 Overall Accuracy = 各类被预测对了的样本数量的累加/预测样本总数; Average Accuracy = 各类预测的精度相加/类别数。
时间: 2024-03-03 18:51:52 浏览: 96
好的,这是一个比较复杂的任务,需要用到一些C++的基础知识和机器学习算法知识。以下是一个基于C++的决策树实现代码的框架,你可以参考这个框架,根据具体需求进行修改和完善。
```c++
#include <iostream>
#include <fstream>
#include <vector>
#include <map>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
// 定义数据结构
struct Sample {
vector<double> features; // 特征
int label; // 标签
};
// 定义决策树节点结构
struct TreeNode {
int featureIndex; // 选择的特征的下标
vector<TreeNode*> children; // 子节点
int label; // 叶子节点的标签
};
// 定义读取数据的函数
vector<Sample> readData(string filename) {
vector<Sample> samples;
ifstream fin(filename);
double feature;
while (fin >> feature) {
Sample sample;
sample.features.push_back(feature);
for (int i = 1; i < 4; i++) {
fin >> feature;
sample.features.push_back(feature);
}
fin >> sample.label;
samples.push_back(sample);
}
fin.close();
return samples;
}
// 定义划分数据集的函数
vector<vector<Sample>> splitData(vector<Sample> samples, double ratio) {
vector<vector<Sample>> result(2);
int trainSize = samples.size() * ratio;
for (int i = 0; i < trainSize; i++) {
int index = rand() % samples.size();
result[0].push_back(samples[index]);
samples.erase(samples.begin() + index);
}
result[1] = samples;
return result;
}
// 定义计算熵的函数
double calcEntropy(vector<Sample> samples) {
map<int, int> labelCount;
for (int i = 0; i < samples.size(); i++) {
labelCount[samples[i].label]++;
}
double entropy = 0;
for (auto it = labelCount.begin(); it != labelCount.end(); it++) {
double p = (double)it->second / samples.size();
entropy -= p * log2(p);
}
return entropy;
}
// 定义计算信息增益的函数
double calcInfoGain(vector<Sample> samples, int featureIndex, double baseEntropy) {
map<double, vector<Sample>> featureSamples;
for (int i = 0; i < samples.size(); i++) {
featureSamples[samples[i].features[featureIndex]].push_back(samples[i]);
}
double newEntropy = 0;
for (auto it = featureSamples.begin(); it != featureSamples.end(); it++) {
double p = (double)it->second.size() / samples.size();
newEntropy += p * calcEntropy(it->second);
}
return baseEntropy - newEntropy;
}
// 定义选择最优特征的函数
int chooseBestFeature(vector<Sample> samples) {
double baseEntropy = calcEntropy(samples);
double maxInfoGain = 0;
int bestFeatureIndex = 0;
for (int i = 0; i < samples[0].features.size(); i++) {
double infoGain = calcInfoGain(samples, i, baseEntropy);
if (infoGain > maxInfoGain) {
maxInfoGain = infoGain;
bestFeatureIndex = i;
}
}
return bestFeatureIndex;
}
// 定义创建决策树的函数
TreeNode* createDecisionTree(vector<Sample> samples, int maxDepth) {
// 如果样本都属于同一个类别,则返回叶子节点
int labelCount = 0;
for (int i = 0; i < samples.size(); i++) {
if (samples[i].label == samples[0].label) {
labelCount++;
}
}
if (labelCount == samples.size()) {
TreeNode* node = new TreeNode();
node->label = samples[0].label;
return node;
}
// 如果没有特征可用或者达到最大深度,则返回叶子节点
if (samples[0].features.size() == 0 || maxDepth == 0) {
TreeNode* node = new TreeNode();
node->label = samples[0].label;
return node;
}
// 选择最优特征划分数据集
int bestFeatureIndex = chooseBestFeature(samples);
TreeNode* node = new TreeNode();
node->featureIndex = bestFeatureIndex;
map<double, vector<Sample>> featureSamples;
for (int i = 0; i < samples.size(); i++) {
featureSamples[samples[i].features[bestFeatureIndex]].push_back(samples[i]);
}
// 递归创建子节点
for (auto it = featureSamples.begin(); it != featureSamples.end(); it++) {
TreeNode* child = createDecisionTree(it->second, maxDepth - 1);
node->children.push_back(child);
}
return node;
}
// 定义预测样本标签的函数
int predict(TreeNode* node, Sample sample) {
if (node->children.empty()) {
return node->label;
}
int featureValue = sample.features[node->featureIndex];
for (int i = 0; i < node->children.size(); i++) {
if (node->children[i]->label == featureValue) {
return predict(node->children[i], sample);
}
}
}
// 定义计算整体精度和类别平均精度的函数
void evaluate(vector<Sample> testSamples, TreeNode* tree, double& overallAccuracy, double& averageAccuracy) {
map<int, int> labelCount;
map<int, int> correctCount;
for (int i = 0; i < testSamples.size(); i++) {
int label = testSamples[i].label;
labelCount[label]++;
int predictLabel = predict(tree, testSamples[i]);
if (predictLabel == label) {
correctCount[label]++;
}
}
overallAccuracy = 0;
averageAccuracy = 0;
int classCount = labelCount.size();
for (auto it = labelCount.begin(); it != labelCount.end(); it++) {
int label = it->first;
int count = it->second;
double accuracy = (double)correctCount[label] / count;
overallAccuracy += accuracy;
averageAccuracy += accuracy / classCount;
}
overallAccuracy /= testSamples.size();
}
int main() {
srand(time(NULL));
// 读取数据
vector<Sample> samples = readData("iris.data");
// 划分数据集
vector<vector<Sample>> data = splitData(samples, 0.5);
vector<Sample> trainSamples = data[0];
vector<Sample> testSamples = data[1];
// 创建决策树
TreeNode* tree = createDecisionTree(trainSamples, 5);
// 评估决策树
double overallAccuracy, averageAccuracy;
evaluate(testSamples, tree, overallAccuracy, averageAccuracy);
cout << "Overall Accuracy: " << overallAccuracy << endl;
cout << "Average Accuracy: " << averageAccuracy << endl;
// 释放内存
// ...
return 0;
}
```
这个代码框架包含了读取数据、划分数据、计算熵和信息增益、选择最优特征、创建决策树、预测样本标签和计算评估指标等基本功能。你可以根据具体需求进行修改和完善。
阅读全文