matlab用符号函数法求解方程at2 + b*t + c=0

时间: 2024-05-13 17:16:41 浏览: 18
可以使用 Matlab 中的符号计算工具箱来求解该方程。具体步骤如下: 1. 定义符号变量 使用 `syms` 命令定义符号变量,这里我们定义符号变量 t,a,b,c: ``` syms t a b c ``` 2. 构建方程 使用上述定义的符号变量构建方程: ``` eqn = a*t^2 + b*t + c == 0; ``` 3. 解方程 使用 `solve` 命令求解方程,得到解析解: ``` sol = solve(eqn, t); ``` 此时,`sol` 的值将为一个符号表达式,包含方程的解析解。 完整代码示例: ```matlab syms t a b c eqn = a*t^2 + b*t + c == 0; sol = solve(eqn, t); ``` 需要注意的是,符号计算工具箱求解的解析解可能会比较复杂,需要根据具体情况进行简化和化简。
相关问题

改写这段代码 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); t=0:1/fs:((length(X)-1)/fs); Ac=X.cos(2*pi*f0*t)+HX.sin(2*pi*f0*t); As=HX.cos(2*pi*f0*t)-X.sin(2*pi*f0*t); Ph=atan2(As,Ac); A2=Ac.^2+As.^2; At=sqrt(A2); end function X=Narrowbandsignal(N,f0,delt,fs,M) N1=N-M; xt=randn(1,N1); f1=f0*2/fs; df=delt/fs; ht = fir1(M, [f1-df, f1+df], 'bandpass'); X=conv(xt,ht); X=X(1:N); end N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+al*cos(2*pi*f0*t+sitl); X2=X+a2*cos(2*pi*f0*t+sit2); X3=X+a3*cos(2*pi*f0*t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; [GA1, ~] = histcounts(Atl, LA); [GA2, ~] = histcounts(At2, LA); [GA3, ~] = histcounts(At3, LA); figure; plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title('包络的分布直方图'); LP=-pi/2:0.05:pi/2; [GP1, ~] = histcounts((Ph1-sitl), LP); [GP2, ~] = histcounts((Ph2-sit2), LP); [GP3, ~] = histcounts((Ph3-sit3), LP); figure; plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title('相位的分布直方图'); LA2=0:1:120; [GA21, ~] = histcounts(A21,LA2); [GA22, ~] = histcounts(A22,LA2); [GA23, ~] = histcounts(A23,LA2); figure; plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'--'); title('包络平方值的分布直方图');

已经将代码进行了改写,修改后的代码如下: ``` function [At,Ph,A2] = EnvelopPhase(X,f0,fs) HX = imag(hilbert(X)); t = 0:1/fs:((length(X)-1)/fs); Ac = X .* cos(2*pi*f0*t) + HX .* sin(2*pi*f0*t); As = HX .* cos(2*pi*f0*t) - X .* sin(2*pi*f0*t); Ph = atan2(As,Ac); A2 = Ac.^2 + As.^2; At = sqrt(A2); end function X = Narrowbandsignal(N,f0,delt,fs,M) N1 = N - M; xt = randn(1,N1); f1 = f0 * 2 / fs; df = delt / fs; ht = fir1(M, [f1-df, f1+df], 'bandpass'); X = conv(xt, ht); X = X(1:N); end N = 10000; f0 = 10000; delt = 400; fs = 22000; M = 50; al = 2; a2 = 4; a3 = 8; sitl = pi/6; sit2 = pi/4; sit3 = pi/3; X = Narrowbandsignal(N,f0,delt,fs,M); X = X / sqrt(var(X)); t = 0:1/fs:((N-1)/fs); X1 = X + al*cos(2*pi*f0*t+sitl); X2 = X + a2*cos(2*pi*f0*t+sit2); X3 = X + a3*cos(2*pi*f0*t+sit3); [Atl,Ph1,A21] = EnvelopPhase(X1, f0, fs); [At2,Ph2,A22] = EnvelopPhase(X2, f0, fs); [At3,Ph3,A23] = EnvelopPhase(X3, f0, fs); LA = 0:0.4:12; [GA1, ~] = histcounts(Atl, LA); [GA2, ~] = histcounts(At2, LA); [GA3, ~] = histcounts(At3, LA); figure; plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title('包络的分布直方图'); LP = -pi/2:0.05:pi/2; [GP1, ~] = histcounts((Ph1-sitl), LP); [GP2, ~] = histcounts((Ph2-sit2), LP); [GP3, ~] = histcounts((Ph3-sit3), LP); figure; plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title('相位的分布直方图'); LA2 = 0:1:120; [GA21, ~] = histcounts(A21,LA2); [GA22, ~] = histcounts(A22,LA2); [GA23, ~] = histcounts(A23,LA2); figure; plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'--'); title('包络平方值的分布直方图'); ```

不使用function改写这段代码 function [At,Ph,A2]=EnvelopPhase(X,f0,fs) HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.*cos(2*pi*f0*t)+HX.*sin(2*pi*f0*t); As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t); Ph=atan(As./Ac); A2=Ac.*Ac+As.*As; At=sqrt(A2); function X=Narrowbandsignal(N,f0,delt,fs,M) N1=N-M; xt=random(1,N1); f1=f0*2/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X/max(abs(X)); return N=10000;f0=10000;delt=400;fs=22000;M=50; al=2;a2=4;a3=8; sitl=pi/6;sit2=pi/4;sit3=pi/3 X=Narrowbandsignal(N,f0,delt,fs,M); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2*pi*f0*t+sitl); X2=X+a2cos(2*pi*f0*t+sit2); X3=X+a3cos(2*pi*f0*t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histogram(Atl, LA); GA2=histogram(At2, LA); GA3=histogram(At3, LA); plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'–'); title('包络的分布直方图'); figure; LP=-pi/2:0.05:pi/2; GP1=histogram((Ph1-sitl),LP); GP2=histogram((Ph2-sit2),LP); GP3=histogram((Ph3-sit3),LP); plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'–'); title('相位的分布直方图'); figure; LA2=0:1:120; GA21=histogram(A21,LA2); GA22=histogram(A22,LA2); GA23=histogram(A23,LA2); plot(LA2,GA21,':', LA2,GA22,'-',LA2,GA23,'–'); title('包络平方值的分布直方图');

以下不使用 `function` 的改写代码: ``` N = 10000; f0 = 10000; delt = 400; fs = 22000; M = 50; al = 2; a2 = 4; a3 = 8; sitl = pi/6; sit2 = pi/4; sit3 = pi/3; % 生成窄带信号 N1 = N-M; xt = rand(1, N1); f1 = f0*2/fs; df = delt/fs; ht = fir1(M, [f1-df f1+df]); X = conv(xt, ht); X = X/max(abs(X)); t = 0:1/fs:((N-1)/fs); % 生成三个幅度不同的信号 X1 = X + al*cos(2*pi*f0*t+sitl); X2 = X + a2*cos(2*pi*f0*t+sit2); X3 = X + a3*cos(2*pi*f0*t+sit3); % 计算三个信号的包络和相位 HX1 = imag(hilbert(X1)); Ac1 = X1.*cos(2*pi*f0*t) + HX1.*sin(2*pi*f0*t); As1 = HX1.*cos(2*pi*f0*t) - X1.*sin(2*pi*f0*t); Ph1 = atan2(As1, Ac1); A21 = Ac1.*Ac1 + As1.*As1; Atl = sqrt(A21); HX2 = imag(hilbert(X2)); Ac2 = X2.*cos(2*pi*f0*t) + HX2.*sin(2*pi*f0*t); As2 = HX2.*cos(2*pi*f0*t) - X2.*sin(2*pi*f0*t); Ph2 = atan2(As2, Ac2); A22 = Ac2.*Ac2 + As2.*As2; At2 = sqrt(A22); HX3 = imag(hilbert(X3)); Ac3 = X3.*cos(2*pi*f0*t) + HX3.*sin(2*pi*f0*t); As3 = HX3.*cos(2*pi*f0*t) - X3.*sin(2*pi*f0*t); Ph3 = atan2(As3, Ac3); A23 = Ac3.*Ac3 + As3.*As3; At3 = sqrt(A23); % 画图 LA = 0:0.4:12; GA1 = histogram(Atl, LA); GA2 = histogram(At2, LA); GA3 = histogram(At3, LA); plot(LA, GA1, ':', LA, GA2, '-', LA, GA3, '–'); title('包络的分布直方图'); figure; LP = -pi/2:0.05:pi/2; GP1 = histogram((Ph1-sitl), LP); GP2 = histogram((Ph2-sit2), LP); GP3 = histogram((Ph3-sit3), LP); plot(LP, GP1, ':', LP, GP2, '-', LP, GP3, '–'); title('相位的分布直方图'); figure; LA2 = 0:1:120; GA21 = histogram(A21, LA2); GA22 = histogram(A22, LA2); GA23 = histogram(A23, LA2); plot(LA2, GA21, ':', LA2, GA22, '-', LA2, GA23, '–'); title('包络平方值的分布直方图'); ``` 注意,这里直接使用了幅度和相位的计算公式,没有对其进行封装成函数。同时,为了避免变量名重复,对原先函数中的 `N` 进行了修改,改为 `N1`。

相关推荐

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用

![MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用](https://img-blog.csdnimg.cn/2020050917173284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thbmdqaWVsZWFybmluZw==,size_16,color_FFFFFF,t_70) # 1. MATLAB取整函数概述** MATLAB取整函数是一组强大的工具,用于对数值进行
recommend-type

我想做python的算法工程师,我应该学什么?学习的顺序是什么?网上有什么推荐的免费课程吗?回答具体精确一点不要太笼统

对于想要成为 Python 算法工程师的人来说,他们应该先从掌握 Python 的基础语法开始,然后学习数据结构和算法,并且要深入了解 Python 中的一些科学计算和数据处理库,比如 NumPy、Pandas 等。 学习的顺序可以是先学习基础语法和编程技巧,然后再学习数据结构和算法相关的知识,最后深入了解数据处理和科学计算相关的库。 对于免费课程的推荐,我建议你可以先去 Coursera、edX、Udacity 等网站上寻找相关课程,这些网站上有很多优质的 Python 编程和算法课程,你可以根据自己的需求和学习进度进行选择。此外,还可以考虑一些在线编程网站,如 HackerRank、L
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。