skimage 实现轮廓绘制具体代码

时间: 2024-03-21 12:37:55 浏览: 26
Skimage中可以使用`skimage.measure.find_contours`函数来实现轮廓绘制,具体的代码如下: ```python from skimage import io, measure, color # 读取图像 img = io.imread('image.png') # 将图像转换为灰度图像 gray_img = color.rgb2gray(img) # 计算图像的轮廓 contours = measure.find_contours(gray_img, 0.5) # 绘制轮廓 fig, ax = plt.subplots() ax.imshow(img, cmap=plt.cm.gray) for contour in contours: ax.plot(contour[:, 1], contour[:, 0], linewidth=2) ax.axis('image') ax.set_xticks([]) ax.set_yticks([]) plt.show() ``` 在以上代码中,我们首先使用skimage.io模块中的imread函数读取了一张彩色图像,然后使用color.rgb2gray函数将其转换为灰度图像。接着,使用measure.find_contours函数计算图像的轮廓。最后,使用matplotlib库将轮廓绘制在原图像上并显示出来。
相关问题

用skimage库选择答题卡选项的位置

要使用`skimage`库选择答题卡选项的位置,需要先进行图像预处理,将彩色图像转换为灰度图像,并对图像进行二值化处理,使得选项区域变成黑色,非选项区域变成白色。然后可以使用`skimage`库中的`find_contours`函数找到图像中的轮廓。 以下是一个示例代码,假设我们有一张答题卡的图像`image`: ```python from skimage import io, color, filters, measure # 将彩色图像转换为灰度图像 gray = color.rgb2gray(image) # 对图像进行二值化处理 thresh = filters.threshold_otsu(gray) binary = gray < thresh # 找到图像中的轮廓 contours = measure.find_contours(binary, 0.5) # 遍历轮廓,找到选项区域的位置 for contour in contours: # 计算轮廓的面积和边界框 area = measure.area(contour) bbox = measure.bounding_box(contour) # 如果面积大于某个阈值,认为是选项区域 if area > 100 and area < 2000: # 在原图像上绘制边界框 image[int(bbox[0]):int(bbox[2]),int(bbox[1]):int(bbox[3]),:] = [255,0,0] # 显示处理后的图像 io.imshow(image) io.show() ``` 这段代码将选项区域的边界框用红色框出来,可以根据实际情况调整阈值和绘制方式。

三维重构的python代码

三维重构的代码需要使用一些计算机视觉和计算机图形学的库,如OpenCV、NumPy、Scikit-image等。下面是一个简单的三维重构的Python代码示例: ```python import cv2 import numpy as np from skimage.measure import find_contours from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt # 读取图像 img = cv2.imread('image.jpg') # 二值化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 寻找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 寻找轮廓的三维坐标 z = np.zeros_like(thresh, dtype=np.float32) for i in range(len(contours)): z[contours[i][:, 1], contours[i][:, 0]] = i # 使用三角剖分重构三维模型 from scipy.spatial import Delaunay points = np.array(np.nonzero(z)).T[:, ::-1] tri = Delaunay(points) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_trisurf(points[:,0], points[:,1], tri.simplices.copy()) plt.show() ``` 上述代码的具体实现流程为: 1. 读取图像,将其转换为灰度图像,并进行二值化处理。 2. 使用OpenCV中的findContours函数寻找二值图像中的轮廓。 3. 将轮廓投影到三维空间中,每个轮廓使用唯一的z值表示。 4. 使用Scipy库中的Delaunay函数进行三角剖分,重构出三维模型。 5. 使用Matplotlib库中的plot_trisurf函数绘制三维模型。 需要注意的是,这只是一个简单的三维重构示例,实际的应用场景可能需要更复杂的算法和技术。

相关推荐

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 # 加载图像 image = Image.open('img.png') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=100, compactness=10) # 可视化超像素标记图 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素标记图 segment_img.save('segments.jpg') n_segments = np.max(segments) + 1 # 初始化超像素块的区域 segment_regions = np.zeros((n_segments, img_np.shape[0], img_np.shape[1])) # 遍历每个超像素块 for i in range(n_segments): # 获取当前超像素块的掩码 mask = (segments == i) # 将当前超像素块的掩码赋值给超像素块的区域 segment_regions[i][mask] = 1 # 保存超像素块的区域 np.save('segment_regions.npy', segment_regions) # 加载超像素块的区域 segment_regions = np.load('segment_regions.npy') # 取出第一个超像素块的区域 segment_region = segment_regions[37] segment_region = (segment_region * 255).astype(np.uint8) # 显示超像素块的区域 plt.imshow(segment_region, cmap='gray') plt.show() # 初始化空白图像 output = np.zeros_like(img_np) # 遍历每个超像素块 for i in range(n_segments): # 获取当前超像素块的掩码 mask = segments == i # 将当前超像素块的掩码赋值给输出图像 output[mask] = segment_regions[i] * 255 # 绘制超像素块的边缘 contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(output, contours, -1, (255, 255, 0), 1) # 显示超像素块的区域和边缘 plt.imshow(output) plt.show()上述代码出现问题:ValueError: shape mismatch: value array of shape (500,500) could not be broadcast to indexing result of shape (0,3)

最新推荐

recommend-type

opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

例如,以下代码展示了如何读取图像、进行二值化处理、检测轮廓并绘制轮廓: ```python import cv2 import numpy as np img = cv2.imread('img.jpg') imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh ...
recommend-type

Opencv实现轮廓提取功能

Opencv实现轮廓提取功能 Opencv中,轮廓提取是一个非常重要的功能,它可以帮助我们从图像中提取有用的信息。轮廓是一系列的点(像素),这些点构成一个有序的点集。 Opencv提供了一个函数findContour来计算轮廓,...
recommend-type

Python Opencv实现图像轮廓识别功能

在这个例子中,使用红色线条(`(0, 0, 255)`)绘制了所有轮廓。 对于特定的应用场景,比如识别和框出图像中的云朵,可以进一步处理这些轮廓。例如,可以使用`cv2.minEnclosingCircle()`函数找到最小的圆来包围每个...
recommend-type

Python实现图片查找轮廓、多边形拟合、最小外接矩形代码

接着,代码展示了如何使用`cv2.drawContours()`来绘制轮廓,这有助于可视化结果。`cv2.arcLength()`用于计算轮廓的周长,`cv2.approxPolyDP()`函数则用于进行多边形拟合。这里的`epsilon`参数控制拟合的精度,它是相...
recommend-type

Unity Shader实现图形绘制(蓝天白云大海)

本资源提供了一个完整的Unity Shader实现图形绘制的示例代码,涵盖了Shader的结构、Properties的定义、SubShader的定义、CGPROGRAM的编写、图形绘制算法、数学基础等方面的知识点。开发者可以通过学习本资源,提高...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。