huber M估计的matlab代码实现
时间: 2023-07-29 19:11:18 浏览: 273
以下是Huber M估计的MATLAB代码实现:
```matlab
function beta = huber_m(x,y,delta,max_iter,tol)
% Inputs:
% x: matrix of predictor variables
% y: vector of response variable
% delta: Huber tuning parameter
% max_iter: maximum number of iterations
% tol: convergence tolerance
% Output:
% beta: vector of estimated coefficients
% Set initial values
[n,p] = size(x);
beta = zeros(p,1);
z = x*beta;
w = ones(n,1);
iter = 0;
while iter < max_iter
iter = iter + 1;
beta_old = beta;
r = y - z;
w(abs(r) <= delta) = 1;
w(abs(r) > delta) = delta./abs(r(abs(r) > delta));
w(isnan(w)) = 0;
v = diag(w);
beta = (x'*v*x)\x'*(v*y);
z = x*beta;
if norm(beta - beta_old) < tol
break
end
end
end
```
其中,`x`是自变量矩阵,`y`是因变量向量,`delta`是Huber调节参数,`max_iter`是最大迭代次数,`tol`是收敛阈值。函数返回估计的系数向量`beta`。
该代码实现的是标准的Huber M估计方法,可以通过修改`w`的计算方式来实现不同的Huber方法,如Huber-White估计等。
阅读全文