使用深度强化学习DQN的奖励机制来模拟对比学习的规则,写一段python代码
时间: 2023-05-23 10:07:16 浏览: 269
首先,需要导入强化学习相关的库,如tensorflow和gym。DQN是一种基于Q-learning算法的强化学习方法,通过神经网络进行实现。
接下来,需要定义一个状态空间,动作空间和奖励机制。假设状态空间为1维,动作空间为2维(左右移动),奖励机制为:如果小球撞到边界或落到地面,则奖励为负数。
代码如下:
```
import tensorflow as tf
import numpy as np
import gym
# 定义状态空间、动作空间和奖励机制
observation_space = 1
action_space = 2
reward_dim = 1
# 定义神经网络
def build_network():
model = tf.keras.Sequential([
tf.keras.layers.Dense(32, activation='relu', input_shape=(observation_space,)),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(action_space, activation='linear')
])
return model
# 定义DQN算法
def DQN():
env = gym.make('MountainCar-v0')
episodes = 2000
memory = []
gamma = 0.95
epsilon = 1.0
epsilon_decay_rate = 0.995
min_epsilon = 0.01
batch_size = 32
target_update_rate = 100
model = build_network()
target_model = build_network()
target_model.set_weights(model.get_weights())
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
huber_loss = tf.keras.losses.Huber()
current_step_count = 0
for ep in range(episodes):
state = env.reset()
state = np.reshape(state, (observation_space,))
total_reward = 0
done = False
while not done:
# 计算当前动作
if np.random.rand() <= epsilon:
action = env.action_space.sample()
else:
Q = model.predict(state[np.newaxis])
action = np.argmax(Q)
# 执行动作,获取下一个状态
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, (observation_space,))
total_reward += reward
# 将状态、动作、奖励和下一个状态存储到记忆中
memory.append((state, action, reward, next_state, done))
# 更新状态
state = next_state
# 若记忆大小超过批量大小,则开始训练神经网络
if len(memory) >= batch_size:
batch = np.random.choice(len(memory), batch_size, replace=False)
sample_states, sample_actions, sample_rewards, sample_next_states, sample_done = zip(*[memory[x] for x in batch])
sample_states = np.asarray(sample_states)
sample_actions = np.asarray(sample_actions)
sample_rewards = np.asarray(sample_rewards)
sample_next_states = np.asarray(sample_next_states)
sample_done = np.asarray(sample_done)
# 计算目标Q值
target_Q = target_model.predict(sample_next_states)
max_target_Q = np.max(target_Q, axis=1)
target_Q = sample_rewards + gamma * max_target_Q * (1 - sample_done)
# 计算当前Q值
with tf.GradientTape() as tape:
Q = model(sample_states)
Q = tf.gather_nd(Q, tf.stack((tf.range(batch_size), sample_actions), axis=1))
loss = huber_loss(target_Q, Q)
# 计算梯度并更新模型参数
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
current_step_count += 1
# 每100个步骤更新目标神经网络
if current_step_count % target_update_rate == 0:
target_model.set_weights(model.get_weights())
# 结束一个episode后,更新epsilon值
if epsilon > min_epsilon:
epsilon *= epsilon_decay_rate
epsilon = max(epsilon, min_epsilon)
# 输出每个episode的总奖励
print("Episode: {}, Total Reward: {:.2f}".format(ep, total_reward))
if __name__ == "__main__":
DQN()
```
以上代码使用深度强化学习DQN的奖励机制模拟了对比学习的规则。在运行时,我们设定了状态空间、动作空间和奖励机制,一次训练默认使用2000次episode,每个episode中,根据当前状态使用贪心策略计算当前动作,然后执行该动作并观察下一个状态、奖励和是否结束的标志位done。在每个episode结束后,更新epsilon值,并输出当前episode的总奖励。
阅读全文