使用深度强化学习DQN来模拟对比学习,并生成一段python代码
时间: 2023-05-23 15:07:32 浏览: 337
A:好的,以下是使用深度强化学习DQN来模拟对比学习的Python代码:
```python
import random
import numpy as np
from collections import deque
from keras.layers import Dense
from keras.models import Sequential
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
done = False
batch_size = 32
for e in range(1000):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
#env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, 1000, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if e % 50 == 0:
agent.save("cartpole-dqn.h5")
```
该代码使用了DQNAgent类来实现深度强化学习的DQN算法,对OpenAI Gym的CartPole-v1游戏进行对比学习。每隔50个episode,保存一次模型参数到文件,以备下次学习使用。在运行过程中,每个episode都会打印出分数和当前的epsilon值。
阅读全文