代码实现
时间: 2024-02-23 22:59:08 浏览: 53
以下是一个基于Python语言的房价预测的实现示例,使用的是线性回归模型:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 读取数据
data = pd.read_csv('house_price.csv')
# 数据预处理
data = data.dropna() # 去除缺失值
data = data[data['price'] > 0] # 去除异常值,价格必须大于0
data = data[data['room_num'] > 0] # 去除异常值,房间数必须大于0
# 特征选择
features = ['area', 'room_num', 'hall_num', 'floor', 'total_floor', 'year', 'district', 'subway']
data = pd.get_dummies(data, columns=['district', 'subway']) # 对分类变量进行独热编码
X = data[features]
y = data['price']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 模型建立
lr = LinearRegression()
lr.fit(X_train, y_train)
# 模型评估
y_pred = lr.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print('均方误差:', mse)
print('均方根误差:', rmse)
# 模型应用
new_house = [[100, 2, 1, 8, 20, 2010, '浦东', '有']]
new_house = pd.DataFrame(new_house, columns=['area', 'room_num', 'hall_num', 'floor', 'total_floor', 'year', 'district', 'subway'])
new_house = pd.get_dummies(new_house, columns=['district', 'subway'])
predict_price = lr.predict(new_house[features])
print('新房价预测值:', predict_price[0])
```
需要注意的是,这只是一个简单的示例,实际的房价预测需要考虑的因素更多,模型的建立和调整也更加复杂。同时,数据的质量和数量也对预测的准确性有很大的影响。
阅读全文