image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)解释
时间: 2024-03-31 07:33:32 浏览: 70
这是一个 PyTorch 中的操作,用于将一个形状为 `(batch_size, height, width)` 的张量 `image` 重塑为一个新的形状为 `(batch_size, height // self.k, self.k, -1, self.k)` 的张量 `image_reshaped`。
具体来说,这个操作会将 `image` 的第二个维度 `height` 除以 `self.k`,得到一个新的维度,表示新的图像高度。然后将原来的 `height` 和新的图像高度分别分割成相等的 `self.k` 个部分,得到两个维度。这样,原来的 `(batch_size, height, width)` 张量就被重塑为了一个五维张量 `(batch_size, height // self.k, self.k, width // self.k, self.k)`。
这个操作在图像处理中比较常见,一般用于将图像分成若干个小块进行处理,或者将图像扩展成一个更高维度的张量以便进行卷积等操作。
相关问题
def model(self): # 词向量映射 with tf.name_scope("embedding"): input_x = tf.split(self.input_x, self.num_sentences, axis=1) # shape:[None,self.num_sentences,self.sequence_length/num_sentences] input_x = tf.stack(input_x, axis=1) embedding = tf.get_variable("embedding", [self.vocab_size, self.embedding_dim]) # [None,num_sentences,sentence_length,embed_size] embedding_inputs = tf.nn.embedding_lookup(embedding, input_x) # [batch_size*num_sentences,sentence_length,embed_size] sentence_len = int(self.seq_length / self.num_sentences) embedding_inputs_reshaped = tf.reshape(embedding_inputs,shape=[-1, sentence_len, self.embedding_dim])
这段代码是一个模型中的一部分,用于进行词向量映射。首先,将输入的句子进行分割,得到每个句子的词语序列。然后,通过embedding_lookup函数将词语序列转换为词向量。接着,将词向量进行reshape操作,将其变为三维的张量,形状为[batch_size*num_sentences, sentence_length, embed_size]。其中,batch_size代表批次大小,num_sentences代表句子数量,sentence_length代表每个句子的长度,embed_size代表词向量的维度。这样做的目的是为了方便后续的模型处理。
转matlab: n_points_total = numpy.int(noisy_sensor_measured_total.shape[1]/(n_obs_in_sensor_array + 1)) intrinsic_process_total_reshaped = numpy.reshape(intrinsic_process_total, [dim_intrinsic, n_points_total, n_obs_in_sensor_array + 1], order='C') noisy_sensor_measured_total_reshaped = numpy.reshape(noisy_sensor_measured_total, [dim_measurement, n_points_total, n_obs_in_sensor_array + 1], order='C') intrinsic_process_base_total = intrinsic_process_total_reshaped[:, :, 0] intrinsic_process_step_total = intrinsic_process_total_reshaped[:, :, 1:] noisy_sensor_base_total = noisy_sensor_measured_total_reshaped[:, :, 0] n_obs_used_in_each_cluster = min(n_obs_used_in_cluster, n_obs_in_sensor_array) obs_used_in_each_cluster_indexes = numpy.random.choice(n_obs_in_sensor_array, size=n_obs_used_in_each_cluster, replace=False) sensor_array_matrix = sensor_array_matrix_dense[:, obs_used_in_each_cluster_indexes] noisy_sensor_step_total = noisy_sensor_measured_total_reshaped[:, :, 1:]
在Matlab中,您可以将以下Python代码转换为对应的Matlab代码:
```matlab
n_points_total = int(size(noisy_sensor_measured_total, 2) / (n_obs_in_sensor_array + 1));
intrinsic_process_total_reshaped = reshape(intrinsic_process_total, [dim_intrinsic, n_points_total, n_obs_in_sensor_array + 1]);
noisy_sensor_measured_total_reshaped = reshape(noisy_sensor_measured_total, [dim_measurement, n_points_total, n_obs_in_sensor_array + 1]);
intrinsic_process_base_total = intrinsic_process_total_reshaped(:, :, 1);
intrinsic_process_step_total = intrinsic_process_total_reshaped(:, :, 2:end);
noisy_sensor_base_total = noisy_sensor_measured_total_reshaped(:, :, 1);
n_obs_used_in_each_cluster = min(n_obs_used_in_cluster, n_obs_in_sensor_array);
obs_used_in_each_cluster_indexes = datasample(1:n_obs_in_sensor_array, n_obs_used_in_each_cluster, 'Replace', false);
sensor_array_matrix = sensor_array_matrix_dense(:, obs_used_in_each_cluster_indexes);
noisy_sensor_step_total = noisy_sensor_measured_total_reshaped(:, :, 2:end);
```
请注意,上述代码中的 `datasample` 函数用于在 `1:n_obs_in_sensor_array` 中随机选择 `n_obs_used_in_each_cluster` 个索引,并且不允许重复。如果您的Matlab版本不支持 `datasample` 函数,可以使用以下代码替代:
```matlab
obs_used_in_each_cluster_indexes = randsample(1:n_obs_in_sensor_array, n_obs_used_in_each_cluster, false);
```
这里使用了 `randsample` 函数来实现相同的功能。
阅读全文
相关推荐
















