input_layer = tf.keras.layers.Input(shape=(9,)) reshaped_input = tf.keras.layers.Reshape((9, 1))(input_layer) conv1 = tf.keras.layers.Conv1D(filters=32, kernel_size=3, activation='relu')(reshaped_input) lstm = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True))(conv1) channel_attention = ChannelAttention()(lstm) flattened = tf.keras.layers.Flatten()(channel_attention) output_layer = tf.keras.layers.Dense(2, activation='relu')(flattened) model = tf.keras.Model(inputs=input_layer, outputs=output_layer) model.compile(optimizer='adam', loss='mse', metrics=['mae'])
时间: 2024-04-01 14:30:46 浏览: 108
tf.keras_分类模块_CNN-深度可分离.ipynb_nose8eu_keras_CNN_tf.keras_分离卷积_
这段代码是什么意思?
这段代码定义了一个深度学习模型,包含输入层、卷积层、双向LSTM层、通道注意力层、全连接层和输出层。具体来说,输入层接受一个形状为(9,)的张量,然后将其通过Reshape层重塑为(9,1)的张量,以适应后续卷积层的输入要求。卷积层使用32个大小为3的滤波器进行卷积运算,并使用ReLU激活函数激活。接下来是一个双向LSTM层,其中使用64个LSTM单元并返回完整的序列输出。然后使用自定义的通道注意力层对LSTM层的输出进行处理,以获得更好的表示能力。最后是一个Flatten层,将三维张量展平为二维张量,并将其输入到一个具有2个输出单元和ReLU激活函数的全连接层中。该模型使用Adam优化器进行训练,均方误差(MSE)是损失函数,均方误差(MAE)是评估指标。
阅读全文