c语言实现遗传算法代码
时间: 2023-05-25 22:04:53 浏览: 130
我是AI语言模型,我无法生成完整的、可运行的代码。但是,我可以提供一些C语言实现遗传算法的示例代码,您可以参考一下:
```c
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
//定义个体结构体
struct individual{
int genes[4]; //染色体
int fitness; //适应度函数值
};
//全局变量
struct individual population[10]; //种群
int target = 28; //目标值
//适应度函数
int fitnessFunction(int genes[]){
int sum = 0,i;
for(i=0;i<4;i++)
sum += genes[i];
return abs(target-sum); //取绝对值
}
//初始化
void initialize(){
int i,j;
for(i=0;i<10;i++){
for(j=0;j<4;j++){
population[i].genes[j] = rand()%10;
}
}
}
//选择函数
void selection(struct individual *parent1, struct individual *parent2){
int i,index1,index2,min=100;
for(i=0;i<10;i++){
if(population[i].fitness < min){
min = population[i].fitness;
index1 = i;
}
}
min = 100;
for(i=0;i<10;i++){
if(i==index1) continue;
if(population[i].fitness < min){
min = population[i].fitness;
index2 = i;
}
}
*parent1 = population[index1];
*parent2 = population[index2];
}
//交叉操作
void crossover(struct individual parent1, struct individual parent2){
int i,crossover_point, temp;
struct individual child1, child2;
for(i=0;i<4;i++){
if(rand()%2==0) child1.genes[i] = parent1.genes[i];
else child1.genes[i] = parent2.genes[i];
}
for(i=0;i<4;i++){
if(rand()%2==0) child2.genes[i] = parent1.genes[i];
else child2.genes[i] = parent2.genes[i];
}
crossover_point = rand()%4; //随机交叉点
for(i=crossover_point;i<4;i++){
temp = child1.genes[i];
child1.genes[i] = child2.genes[i];
child2.genes[i] = temp;
}
population[8] = child1;
population[9] = child2;
}
//变异操作
void mutation(){
int i,j;
for(i=0;i<10;i++){
for(j=0;j<4;j++){
if(rand()%100 < 5){ //5%的概率突变
population[i].genes[j] = rand()%10;
}
}
}
}
int main(){
int i,j,generation=0;
struct individual parent1, parent2;
initialize();
while(1){ //迭代
generation++;
for(i=0;i<10;i++){
population[i].fitness = fitnessFunction(population[i].genes);
if(population[i].fitness == 0){
printf("最佳个体:");
for(j=0;j<4;j++){
printf("%d ",population[i].genes[j]);
}
printf("\n目标值:%d\n",target);
printf("迭代次数:%d\n\n",generation);
return 0;
}
}
selection(&parent1,&parent2);
crossover(parent1,parent2);
mutation();
printf("第%d代:\n",generation);
for(i=0;i<10;i++){
printf("%d个体:",i+1);
for(j=0;j<4;j++){
printf("%d ",population[i].genes[j]);
}
printf("适应度:%d\n",population[i].fitness);
}
printf("\n");
}
}
```
上述代码是一个简单的遗传算法,主要用于求解四个整数的和等于目标值的问题,目标值为28。其中,initialize()函数用于初始化种群,fitnessFunction()函数用于计算某一染色体的适应度值,selection()函数用于选择父代进行交叉配对,crossover()函数用于交叉操作,mutation()函数用于变异操作,主函数中的while循环用于进行迭代,寻找适应度值为0的个体,即最优解。
阅读全文