python中在LSTM层中添加attention层的运用代码举例
时间: 2023-06-27 11:08:16 浏览: 112
以下是在LSTM层中添加Attention层的示例代码:
```python
from keras.layers import Input, Dense, LSTM, Dropout, Embedding, Bidirectional, Concatenate, Dot, Activation, Lambda
from keras.models import Model
import keras.backend as K
# Define input shape
inputs = Input(shape=(max_len,), dtype='int32')
# Define embedding layer
embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_len, weights=[embedding_matrix], trainable=False)(inputs)
# Define bidirectional LSTM layer
lstm_layer = Bidirectional(LSTM(units=hidden_size, return_sequences=True))(embedding_layer)
# Define Attention layer
attention = Dense(1, activation='tanh')(lstm_layer)
attention = Activation('softmax')(attention)
attention = Lambda(lambda x: K.mean(x * lstm_layer, axis=1))(attention)
# Concatenate LSTM and Attention layer
concat = Concatenate(axis=1)([lstm_layer, attention])
# Define dense output layer
outputs = Dense(units=output_size, activation='softmax')(concat)
# Define model
model = Model(inputs=inputs, outputs=outputs)
```
在上述代码中,我们使用了Keras深度学习框架,通过`Input()`函数定义输入层,然后使用`Embedding()`函数添加嵌入层,再使用`Bidirectional()`函数添加双向LSTM层。
接下来,我们定义了一个全连接层来计算Attention权重,使用`Lambda()`函数计算加权平均,最后使用`Concatenate()`函数将LSTM层和Attention层进行连接。
最后,我们使用`Dense()`函数添加输出层,并通过`Model()`函数定义模型。