python中outputs, _ = self.model(inputs.unsqueeze(1).type(torch.cuda.FloatTensor))是什么意思
时间: 2024-05-26 08:14:49 浏览: 152
这行代码是使用 PyTorch 框架实现的,其中 inputs 是输入的数据。通常情况下,神经网络的输入是一个 batch 的数据,即一个二维张量,第一维表示 batch size,第二维表示特征维度。但是在这里,inputs.unsqueeze(1) 会在第二维上增加一个维度,变成一个三维张量,这是因为这里的输入是单个数据,而不是一个 batch。
接着,使用 type(torch.cuda.FloatTensor) 将输入转换成在 GPU 上计算的 FloatTensor 类型。这是因为在 PyTorch 中,神经网络的计算可以在 CPU 或 GPU 上进行,而在 GPU 上计算可以加速计算过程。
最后,使用 self.model 对输入进行前向计算,并将计算结果存储在 outputs 中。这里使用了 Python 中的“解包”语法,将计算结果按顺序赋值给 outputs 和 _,其中 _ 表示不需要使用的变量。
相关问题
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,下面是使用LDAM损失函数训练模型的代码:
```python
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
# 定义LDAM损失函数
class LDAMLoss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30):
super(LDAMLoss, self).__init__()
m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list))
m_list = m_list * (max_m / np.max(m_list))
m_list = torch.cuda.FloatTensor(m_list)
self.m_list = m_list
assert s > 0
self.s = s
if weight is not None:
weight = torch.FloatTensor(weight).cuda()
self.weight = weight
self.cls_num_list = cls_num_list
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index_float = index.type(torch.cuda.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1
batch_m = batch_m.view((x.size(0), 1)) # size=(batch_size, 1)
x_m = x - batch_m
output = torch.where(index, x_m, x)
if self.weight is not None:
output = output * self.weight[None, :]
target = torch.flatten(target) # 将 target 转换成 1D Tensor
logit = output * self.s
return F.cross_entropy(logit, target, weight=self.weight)
# 定义模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, classes)
model.to(DEVICE)
# 定义优化器和学习率调整器
optimizer = optim.Adam(model.parameters(), lr=model_lr)
scheduler = CosineAnnealingLR(optimizer, T_max=EPOCHS, eta_min=1e-6)
# 定义LDAM损失函数
cls_num_list = [len(dataset_train[dataset_train.targets == t]) for t in range(classes)]
criterion = LDAMLoss(cls_num_list)
# 定义数据加载器
train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True)
test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, pin_memory=True)
# 训练模型
best_acc = 0.0
for epoch in range(start_epoch, EPOCHS + 1):
model.train()
train_loss = 0.0
train_corrects = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
if use_dp:
inputs, labels = dp(inputs, labels)
if use_amp:
with amp.autocast():
inputs, labels = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
inputs, labels_a, labels_b, lam = mixup_fn(inputs, labels)
outputs = model(inputs)
loss = mixup_criterion(criterion, outputs, labels_a, labels_b, lam)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
optimizer.zero_grad()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_corrects += torch.sum(preds == labels.data)
train_loss /= len(dataset_train)
train_acc = train_corrects.double() / len(dataset_train)
model.eval()
test_loss = 0.0
test_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
outputs = model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_corrects += torch.sum(preds == labels.data)
test_loss /= len(dataset_test)
test_acc = test_corrects.double() / len(dataset_test)
# 更新最佳模型
if test_acc > best_acc:
if use_ema:
ema_model.load_state_dict(model.state_dict())
best_acc = test_acc
# 更新学习率
scheduler.step()
# 打印训练结果
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'.format(
epoch, EPOCHS, train_loss, train_acc, test_loss, test_acc))
```
这是一个crossattention模块:class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # force cast to fp32 to avoid overflowing if _ATTN_PRECISION =="fp32": with torch.autocast(enabled=False, device_type = 'cuda'): q, k = q.float(), k.float() sim = einsum('b i d, b j d -> b i j', q, k) * self.scale else: sim = einsum('b i d, b j d -> b i j', q, k) * self.scale del q, k if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of sim = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', sim, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) 我如何从中提取各个提示词的注意力热力图并用Gradio可视化?
要从CrossAttention模块中提取各个提示词的注意力热力图并用Gradio可视化,可以按照以下步骤进行:
1. 首先,导入所需的库:
```python
import torch
from PIL import Image
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义CrossAttention模块的网络结构及参数:
```python
# 在上述代码之前添加
from torch import nn
from einops import rearrange, repeat, reduce
# 定义CrossAttention模块
class CrossAttention(nn.Module):
...
```
3. 定义函数来生成注意力热力图:
```python
def generate_attention_map(model, x):
# 将模型设置为评估模式
model.eval()
# 将输入张量转换为PyTorch张量
x = torch.from_numpy(x).unsqueeze(0)
# 使用模型进行前向传播
with torch.no_grad():
attention_map = model(x)
# 将注意力热力图从PyTorch张量转换为NumPy数组
attention_map = attention_map.squeeze(0).numpy()
return attention_map
```
4. 定义函数来可视化注意力热力图:
```python
def visualize_attention_map(attention_map):
# 使用Matplotlib库绘制热力图
plt.imshow(attention_map, cmap='hot', interpolation='nearest')
plt.axis('off')
plt.show()
```
5. 定义Gradio界面和回调函数:
```python
def gradio_interface(model):
def inference(input_image):
# 将输入图像转换为NumPy数组
input_image = input_image.astype(np.float32) / 255.0
# 生成注意力热力图
attention_map = generate_attention_map(model, input_image)
# 可视化注意力热力图
visualize_attention_map(attention_map)
# 定义输入界面,类型为图像
input_interface = gr.inputs.Image()
# 定义输出界面,类型为无
output_interface = gr.outputs.Textbox()
# 创建Gradio界面
gr.Interface(fn=inference, inputs=input_interface, outputs=output_interface).launch()
# 加载预训练的CrossAttention模型
model = CrossAttention(query_dim=..., context_dim=..., heads=..., dim_head=...)
# 启动Gradio界面
gradio_interface(model)
```
请确保在代码中替换`query_dim`、`context_dim`、`heads`和`dim_head`的值为你模型的实际参数。然后,运行代码并访问Gradio界面,上传图像后即可看到生成的注意力热力图。
注意:以上代码仅为示例,具体实现可能因模型结构和需求而有所不同。你可能需要根据你的具体情况进行适当的修改。
阅读全文