df = pd.read_csv('stock_data.csv') if len(df) >= 4 and window_size > 0: df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1 if len(df) >= 3 and window_size > 0: df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1增加定义window_size
时间: 2024-02-29 16:52:17 浏览: 65
可以在代码中定义 window_size 变量,如下:
```
window_size = 4 # 定义窗口大小
df = pd.read_csv('stock_data.csv')
if len(df) >= window_size and window_size > 0:
df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size-1))) * 1
if len(df) >= window_size-1 and window_size > 0:
df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-2))) * 1
```
其中,window_size 的值可以根据需要进行调整。如果窗口大小小于等于 0,就不会进行滑动窗口计算。
相关问题
import pandas as pd window_size = 4 # 定义窗口大小 df = pd.read_csv('stock_data.csv') if len(df) >= window_size and window_size > 0: df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size-1))) * 1 if len(df) >= window_size-1 and window_size > 0: df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-2))) * 1修改此代码,避免出现0 is not in range
如果你仍然遇到 `0 is not in range` 的错误,可以尝试以下两种方法:
1. 检查数据中是否有缺失值。如果数据中有缺失值,可能会导致rolling函数中的窗口大小小于指定的窗口大小,从而导致错误。你可以使用 `df.isnull().sum()` 来检查数据中是否有缺失值。
2. 将lambda函数中的 `range(window_size-1)` 和 `range(window_size-2)` 改为 `range(window_size)` 和 `range(window_size-1)`,这样可以确保范围中包含数字0。
修改后的代码如下:
```
import pandas as pd
window_size = 4 # 定义窗口大小
df = pd.read_csv('stock_data.csv')
if len(df) >= window_size and window_size > 0:
df['four_days_increase'] = df['close'].rolling(window=window_size).apply(lambda x: all(x[i] < x[i+1] for i in range(window_size))) * 1
if len(df) >= window_size-1 and window_size > 0:
df['three_days_decrease'] = df['close'].rolling(window=window_size-1).apply(lambda x: all(x[i] > x[i+1] for i in range(window_size-1))) * 1
```
注意,这里仅仅是对错误的解决方案,如果是数据问题,需要对数据进行处理。
df = pd.read_csv('stock_data.csv') if len(df) >= 4: df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1 if len(df) >= 3: df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1增加如果窗口大小小于或等于零则不操作
可以在代码中增加对窗口大小的判断,如果窗口大小小于等于 0,就不进行滑动窗口计算。修改后的代码如下:
```
df = pd.read_csv('stock_data.csv')
if len(df) >= 4 and window_size > 0:
df['four_days_increase'] = df['close'].rolling(window=4).apply(lambda x: all(x[i] < x[i+1] for i in range(3))) * 1
if len(df) >= 3 and window_size > 0:
df['three_days_decrease'] = df['close'].rolling(window=3).apply(lambda x: all(x[i] > x[i+1] for i in range(2))) * 1
```
其中,window_size 为窗口大小,可以在代码中对其进行设置。如果窗口大小小于等于 0,就不会进行滑动窗口计算。
阅读全文