车间布局优化matlab代码
时间: 2023-10-17 10:05:42 浏览: 108
车间布局优化问题是一个经典的优化问题,下面给出一个使用Matlab实现的简单示例代码,供参考:
```matlab
% 车间布局优化问题示例代码
% 假设车间中有n个设备需要布局,将它们分布在m个工作站上。
% 设第i个设备的坐标为(xi, yi),第j个工作站的坐标为(xj, yj)。
% 设dij为第i个设备和第j个工作站之间的距离,则布局优化的目标是最小化所有dij的和。
% 首先定义设备和工作站的坐标
n = 5; % 设备数
m = 3; % 工作站数
X = randi([0,50],n+m,1); % 所有点的x坐标
Y = randi([0,50],n+m,1); % 所有点的y坐标
X_dev = X(1:n); % 设备的x坐标
Y_dev = Y(1:n); % 设备的y坐标
X_wks = X(n+1:end); % 工作站的x坐标
Y_wks = Y(n+1:end); % 工作站的y坐标
% 构造距离矩阵
D = zeros(n,m);
for i = 1:n
for j = 1:m
D(i,j) = sqrt((X_dev(i)-X_wks(j))^2 + (Y_dev(i)-Y_wks(j))^2);
end
end
% 定义目标函数
objfun = @(x) sum(sum(D .* x));
% 定义约束条件
Aeq = ones(1,m); % 每个设备必须分配到一个工作站
beq = ones(n,1);
lb = zeros(n*m,1); % 分配变量x的下界
ub = ones(n*m,1); % 分配变量x的上界
% 调用fmincon函数进行优化
x0 = zeros(n,m); % 初始解
x0(1:n,1) = 1; % 将所有设备都分配到第一个工作站上
x0 = x0(:); % 将x转化为列向量
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
[x,fval,exitflag,output] = fmincon(objfun,x0,[],[],Aeq,beq,lb,ub,[],options);
% 将最优解转化为二维数组形式
x = reshape(x,n,m);
% 绘制布局图
figure;
hold on;
plot(X_dev,Y_dev,'ro','MarkerSize',10,'LineWidth',2);
plot(X_wks,Y_wks,'bs','MarkerSize',10,'LineWidth',2);
for i = 1:n
for j = 1:m
if x(i,j) == 1
plot([X_dev(i),X_wks(j)],[Y_dev(i),Y_wks(j)],'k--','LineWidth',1);
end
end
end
legend('设备','工作站','分配');
xlabel('x坐标');
ylabel('y坐标');
title(['最优目标值:',num2str(fval)]);
```
这个示例代码中使用了fmincon函数进行优化,其作用是最小化目标函数,同时满足一系列线性等式和不等式约束条件,具体用法可以参考Matlab的文档。
阅读全文
相关推荐

















