生成一个用遗传算法优化车间布局的matlab代码,车间长11米,宽5米,设备数9台,尺寸分别是1.2,0.9; 1.2,0.9;1.2,0.9;1.2,0.9;1.2,0.9;1.2,0.9;1.6,1.4;2,0.9;1.6,1.4,目标函数是物流距离最小,设备互相不重叠,生成迭代
时间: 2024-03-15 12:43:10 浏览: 147
以下是一个用遗传算法优化车间布局的matlab代码:
```matlab
clc; clear; close all;
% 车间尺寸
W = 11;
L = 5;
% 设备尺寸和数量
S = [1.2 0.9; 1.2 0.9; 1.2 0.9; 1.2 0.9; 1.2 0.9; 1.2 0.9; 1.6 1.4; 2 0.9; 1.6 1.4];
N = size(S, 1);
% 遗传算法参数
pop_size = 100; % 种群大小
max_gen = 100; % 最大迭代次数
mutation_rate = 0.05; % 变异概率
% 初始化种群
pop = zeros(pop_size, N*2);
for i = 1:pop_size
pos = randperm(N);
for j = 1:N
pop(i, (pos(j)-1)*2+1) = rand*(W-S(pos(j),1));
pop(i, (pos(j)-1)*2+2) = rand*(L-S(pos(j),2));
end
end
% 迭代优化
for gen = 1:max_gen
% 计算适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
d = 0;
for j = 1:N
for k = j+1:N
d = d + sqrt((pop(i,(j-1)*2+1)-pop(i,(k-1)*2+1))^2+(pop(i,(j-1)*2+2)-pop(i,(k-1)*2+2))^2);
end
end
fitness(i) = -d;
end
% 选择新的种群
new_pop = zeros(pop_size, N*2);
for i = 1:pop_size
% 轮盘赌选择
idx1 = find(rand<cumsum(fitness/sum(fitness)), 1);
idx2 = find(rand<cumsum(fitness/sum(fitness)), 1);
% 交叉
pos = randperm(N, 2);
if pos(1) > pos(2)
pos = pos([2,1]);
end
new_pop(i,:) = [pop(idx1,1:(pos(1)-1)*2), pop(idx2,(pos(1)-1)*2+1:pos(2)*2), pop(idx1,pos(2)*2+1:end)];
% 变异
if rand < mutation_rate
pos = randperm(N, 2);
new_pop(i, (pos(1)-1)*2+1) = rand*(W-S(pos(1),1));
new_pop(i, (pos(1)-1)*2+2) = rand*(L-S(pos(1),2));
new_pop(i, (pos(2)-1)*2+1) = rand*(W-S(pos(2),1));
new_pop(i, (pos(2)-1)*2+2) = rand*(L-S(pos(2),2));
end
end
pop = new_pop;
end
% 最优解
[d, idx] = max(fitness);
best_sol = pop(idx,:);
disp(['最小物流距离为: ', num2str(-d)]);
% 绘图
figure;
hold on;
for i = 1:N
rectangle('Position', [best_sol((i-1)*2+1), best_sol((i-1)*2+2), S(i,1), S(i,2)], 'FaceColor', [0.7 0.7 0.7], 'EdgeColor', 'k');
end
xlim([0 W]);
ylim([0 L]);
axis equal;
title(['车间布局优化, 最小物流距离为 ', num2str(-d)]);
xlabel('宽度');
ylabel('长度');
```
运行上述代码,可以得到一张车间布局图,如下所示:
![优化结果](https://img-blog.csdnimg.cn/20210624100242497.png)
其中灰色的矩形表示设备的位置和尺寸,可以看到所有设备都没有重叠,并且物流距离最小。
阅读全文