车间布局优化的遗传算法 Matlab 代码,车间长10米,宽5米,设备16台,每台设备长1.2米,宽0.8,要求布局为两行,且不重叠,并绘图
时间: 2024-05-07 19:22:34 浏览: 47
以下是一个基本的遗传算法的 MATLAB 代码,用于优化车间布局:
```matlab
% 定义问题参数
length = 10; % 车间长度
width = 5; % 车间宽度
num_equipments = 16; % 设备数
equip_length = 1.2; % 设备长度
equip_width = 0.8; % 设备宽度
% 定义遗传算法参数
pop_size = 50; % 种群大小
num_generations = 100; % 迭代次数
mutation_rate = 0.01; % 变异率
crossover_rate = 0.8; % 交叉率
% 初始化种群
pop = zeros(pop_size, num_equipments);
for i = 1:pop_size
pop(i,:) = randperm(num_equipments);
end
% 迭代优化
for gen = 1:num_generations
% 计算适应度
fitness = zeros(pop_size, 1);
for i = 1:pop_size
% 将设备分成两行
row1 = pop(i,1:num_equipments/2);
row2 = pop(i,num_equipments/2+1:end);
% 计算每行的长度和宽度
row1_length = sum(equip_length.*ismember(row1,1:num_equipments/2));
row1_width = max(equip_width.*ismember(row1,1:num_equipments/2));
row2_length = sum(equip_length.*ismember(row2,num_equipments/2+1:num_equipments));
row2_width = max(equip_width.*ismember(row2,num_equipments/2+1:num_equipments));
% 计算适应度
fitness(i) = -abs(row1_length-row2_length) - max(row1_width,row2_width);
end
% 选择优秀个体
[~, idx] = sort(fitness,'descend');
elite = pop(idx(1:2),:);
% 交叉
offspring = zeros(pop_size-2, num_equipments);
for i = 1:(pop_size-2)/2
% 随机选择两个个体进行交叉
p1 = pop(randi([1,pop_size]),:);
p2 = pop(randi([1,pop_size]),:);
% 随机选择交叉点
crossover_point = randi([1,num_equipments-1]);
% 生成新个体
offspring(2*i-1,:) = [p1(1:crossover_point), p2(crossover_point+1:end)];
offspring(2*i,:) = [p2(1:crossover_point), p1(crossover_point+1:end)];
end
% 变异
for i = 1:pop_size-2
if rand() < mutation_rate
% 随机选择两个位置进行变异
pos1 = randi([1,num_equipments]);
pos2 = randi([1,num_equipments]);
% 交换位置
temp = offspring(i,pos1);
offspring(i,pos1) = offspring(i,pos2);
offspring(i,pos2) = temp;
end
end
% 更新种群
pop = [elite; offspring];
% 输出结果
best_fitness = max(fitness);
best_solution = pop(find(fitness == best_fitness, 1),:);
disp(['Generation ', num2str(gen), ': Best Fitness = ', num2str(best_fitness)]);
end
% 绘制布局图
row1 = best_solution(1:num_equipments/2);
row2 = best_solution(num_equipments/2+1:end);
figure;
hold on;
for i = 1:num_equipments/2
x = 0.1 + (i-1)*1.3;
y = 0.1;
rectangle('Position',[x,y,equip_length,equip_width],'FaceColor','r');
if ismember(i,row1)
text(x+0.5*equip_length,y+0.5*equip_width,num2str(i),'HorizontalAlignment','center','VerticalAlignment','middle','Color','w');
else
text(x+0.5*equip_length,y+0.5*equip_width,num2str(i),'HorizontalAlignment','center','VerticalAlignment','middle','Color','r');
end
end
for i = 1:num_equipments/2
x = 0.1 + (i-1)*1.3;
y = 1.2;
rectangle('Position',[x,y,equip_length,equip_width],'FaceColor','r');
if ismember(i+num_equipments/2,row2)
text(x+0.5*equip_length,y+0.5*equip_width,num2str(i+num_equipments/2),'HorizontalAlignment','center','VerticalAlignment','middle','Color','w');
else
text(x+0.5*equip_length,y+0.5*equip_width,num2str(i+num_equipments/2),'HorizontalAlignment','center','VerticalAlignment','middle','Color','r');
end
end
xlim([0,length+0.2]);
ylim([0,width+0.2]);
axis equal;
axis off;
```
这段代码使用遗传算法优化车间布局,使得设备分布在两行中,不重叠,并且最大化两行长度的差异和最小化两行的最大宽度。最后,使用 `rectangle` 和 `text` 函数绘制布局图。
阅读全文