stm32f103vet6与stc89c52怎么进行can通讯
时间: 2024-05-20 12:13:04 浏览: 165
首先,要确定两个芯片之间的CAN硬件连接方式,因为不同的芯片可能具有不同的CAN硬件接口。
对于STM32F103VET6,它具有两个CAN硬件接口,分别为CAN1和CAN2,每个接口都有两个引脚:CAN_RX和CAN_TX。对于STC89C52,它没有集成CAN硬件接口,但可以通过外部硬件电路连接到CAN总线。
接下来,您需要编写适当的CAN通信代码,以便两个芯片之间进行通信。这涉及到使用适当的CAN寄存器和位运算,以配置CAN通信参数和发送/接收CAN消息。
对于STM32F103VE6,您可以使用STM32标准外设库提供的CAN驱动程序来简化CAN通信的实现。对于STC89C52,您需要自行编写CAN通信代码,或使用第三方代码库来帮助实现CAN通信。
总之,要使STM32F103VE6和STC89C52之间进行CAN通信,您需要确定CAN硬件连接方式,然后编写适当的CAN通信代码来配置CAN参数并发送/接收CAN消息。
相关问题
stc89c52和stm32f103vet6can通讯代码
这里提供一个简单的示例代码,展示如何在STC89C52和STM32F103VE之间使用CAN通信:
STC89C52代码:
```c
#include <REG52.H>
#include <intrins.h>
#define CAN_SPEED 250000 // CAN总线速率
sbit P1_0 = P1^0; // LED指示灯
unsigned char Can_Init_Flags; // CAN初始化标志
unsigned char Can_Rx_Msg_Flags; // CAN消息接收标志
unsigned char Can_Tx_Msg_Flags; // CAN消息发送标志
unsigned char Can_Err_Msg_Flags; // CAN错误消息标志
unsigned char Can_Msg_Priority; // CAN消息优先级
unsigned char Can_Msg_Length; // CAN消息长度
unsigned char Can_Msg_Data[8]; // CAN消息数据
// CAN初始化函数
void Can_Init() {
Can_Init_Flags = 0;
// P1.0配置为输出
P1_0 = 0;
// 定时器0初始化
TMOD &= 0xF0;
TMOD |= 0x01;
TH0 = 0xFC;
TL0 = 0x67;
ET0 = 1;
TR0 = 1;
// CAN初始化
Can_Init_Flags = CAN_Init_Mode(CAN_SPEED);
if (Can_Init_Flags == 0x00) {
P1_0 = 1; // 初始化成功,LED指示灯亮
} else {
P1_0 = 0; // 初始化失败,LED指示灯灭
}
}
// CAN消息接收函数
void Can_Receive_Msg() {
Can_Rx_Msg_Flags = CAN_Rx_Msg(&Can_Msg_Priority, &Can_Msg_Length, Can_Msg_Data);
if (Can_Rx_Msg_Flags == 0x00) {
if (Can_Msg_Length == 1 && Can_Msg_Data[0] == 0x01) {
P1_0 = 1; // 接收到0x01,LED指示灯亮
} else {
P1_0 = 0; // 接收到其他数据,LED指示灯灭
}
}
}
// CAN消息发送函数
void Can_Transmit_Msg() {
Can_Tx_Msg_Flags = CAN_Tx_Msg(Can_Msg_Priority, Can_Msg_Length, Can_Msg_Data);
if (Can_Tx_Msg_Flags == 0x00) {
P1_0 = 1; // 发送成功,LED指示灯亮
} else {
P1_0 = 0; // 发送失败,LED指示灯灭
}
}
// 定时器0中断函数
void Timer0_ISR() interrupt 1 {
Can_Receive_Msg(); // 接收CAN消息
}
// 主函数
void main() {
Can_Init(); // CAN初始化
while (1) {
Can_Msg_Priority = 0x00; // CAN消息优先级
Can_Msg_Length = 1; // CAN消息长度
Can_Msg_Data[0] = 0x01; // CAN消息数据
Can_Transmit_Msg(); // 发送CAN消息
Delay50ms(); // 延时50ms
}
}
```
STM32F103VE代码:
```c
#include "stm32f10x.h"
#define CAN_SPEED 250000 // CAN总线速率
GPIO_InitTypeDef GPIO_InitStructure; // GPIO初始化结构体
CAN_InitTypeDef CAN_InitStructure; // CAN初始化结构体
CAN_FilterInitTypeDef CAN_FilterInitStructure; // CAN过滤器初始化结构体
CanTxMsg TxMessage; // CAN发送消息结构体
CanRxMsg RxMessage; // CAN接收消息结构体
// 延时函数
void Delay(uint32_t nCount) {
for(; nCount != 0; nCount--);
}
// GPIO初始化函数
void GPIO_Configuration(void) {
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA时钟
// PA11(CAN1-Rx)、PA12(CAN1-Tx)配置为复用推挽输出
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
// CAN初始化函数
void CAN_Configuration(void) {
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE); // 使能CAN1时钟
// CAN1初始化
CAN_InitStructure.CAN_TTCM = DISABLE;
CAN_InitStructure.CAN_ABOM = DISABLE;
CAN_InitStructure.CAN_AWUM = DISABLE;
CAN_InitStructure.CAN_NART = DISABLE;
CAN_InitStructure.CAN_RFLM = DISABLE;
CAN_InitStructure.CAN_TXFP = DISABLE;
CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;
CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;
CAN_InitStructure.CAN_BS1 = CAN_BS1_6tq;
CAN_InitStructure.CAN_BS2 = CAN_BS2_8tq;
CAN_InitStructure.CAN_Prescaler = 16;
CAN_Init(CAN1, &CAN_InitStructure);
// CAN过滤器初始化
CAN_FilterInitStructure.CAN_FilterNumber = 0;
CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask;
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
CAN_FilterInitStructure.CAN_FilterIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
CAN_FilterInit(&CAN_FilterInitStructure);
// CAN中断配置
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = USB_LP_CAN1_RX0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x0F;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// CAN接收中断使能
CAN_ITConfig(CAN1, CAN_IT_FMP0, ENABLE);
}
// 发送CAN消息函数
void CAN_Send_Msg(uint8_t *Data, uint8_t DataLength) {
TxMessage.StdId = 0x123;
TxMessage.ExtId = 0;
TxMessage.IDE = CAN_Id_Standard;
TxMessage.RTR = CAN_RTR_Data;
TxMessage.DLC = DataLength;
for (int i = 0; i < DataLength; i++) {
TxMessage.Data[i] = Data[i];
}
CAN_Transmit(CAN1, &TxMessage);
}
// 接收CAN消息函数
void USB_LP_CAN1_RX0_IRQHandler(void) {
CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
if (RxMessage.StdId == 0x123 && RxMessage.IDE == CAN_Id_Standard && RxMessage.DLC == 1 && RxMessage.Data[0] == 0x01) {
GPIO_WriteBit(GPIOA, GPIO_Pin_0, Bit_SET); // 接收到0x01,PA0输出高电平
} else {
GPIO_WriteBit(GPIOA, GPIO_Pin_0, Bit_RESET); // 接收到其他数据,PA0输出低电平
}
}
// 主函数
int main(void) {
// GPIO初始化
GPIO_Configuration();
// CAN初始化
CAN_Configuration();
// 发送CAN消息
uint8_t Data[] = {0x01};
while (1) {
CAN_Send_Msg(Data, sizeof(Data));
Delay(0xFFFFF); // 延时
}
}
```
注意:本示例代码中,STC89C52使用P1.0作为LED指示灯,STM32F103VE使用PA0作为LED指示灯,需要根据自己的硬件连接情况进行修改。此外,还需要在STM32F103VE的`stm32f10x_it.c`文件中添加CAN接收中断处理函数。
STM32F103VCT6和STM32F103VET6的区别
STM32F103VCT6和STM32F103VET6是STMicroelectronics公司生产的两款微控制器,它们属于STM32F1系列。它们之间的区别主要体现在以下几个方面:
1. 封装类型:VCT6和VET6代表了不同的封装类型。VCT6采用的是LQFP封装,而VET6采用的是LQFP封装。
2. 存储容量:两者在存储容量方面也有所不同。STM32F103VCT6具有256KB的Flash存储器和48KB的SRAM,而STM32F103VET6具有512KB的Flash存储器和64KB的SRAM。因此,VET6相比VCT6具有更大的存储容量。
3. 引脚数量:由于封装类型不同,两者的引脚数量也有所不同。STM32F103VCT6具有100个引脚,而STM32F103VET6具有144个引脚。因此,VET6相比VCT6具有更多的引脚可用于外部连接。
4. 价格:由于存储容量和引脚数量的差异,两者的价格也会有所不同。一般来说,STM32F103VET6相对于STM32F103VCT6会稍微贵一些。
阅读全文