python利用朴素贝叶斯分类企鹅数据
时间: 2023-10-08 08:08:00 浏览: 140
可以使用python中的sklearn库来实现朴素贝叶斯分类。以下是一个简单的示例代码,使用朴素贝叶斯算法对企鹅数据进行分类。
首先,导入需要的库:
```python
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```
然后,加载企鹅数据集:
```python
data = load_iris()
X = data.data
y = data.target
```
接着,将数据集分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
创建一个朴素贝叶斯分类器:
```python
clf = GaussianNB()
```
使用训练集拟合分类器:
```python
clf.fit(X_train, y_train)
```
在测试集上进行预测:
```python
y_pred = clf.predict(X_test)
```
最后,计算分类器的准确率:
```python
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
完整代码如下:
```python
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
data = load_iris()
X = data.data
y = data.target
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建朴素贝叶斯分类器
clf = GaussianNB()
# 拟合模型
clf.fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
这段代码将企鹅数据集分为训练集和测试集,使用朴素贝叶斯算法对训练集进行拟合,并在测试集上进行预测。最后,计算分类器的准确率。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![csv](https://img-home.csdnimg.cn/images/20241231044821.png)