pred_svm_test <- predict(svm_model, newdata = adult1_test, type = 'response') Error in .local(object, ...) : test vector does not match model !
时间: 2024-04-09 22:32:45 浏览: 185
这个错误表明预测时测试数据的向量长度与模型不匹配。为了解决这个问题,请确保测试数据的列名和列数与训练模型时使用的数据集一致。
首先,使用以下代码来检查测试数据 `adult1_test` 的列名和列数:
```R
colnames(adult1_test)
ncol(adult1_test)
```
然后,再使用以下代码来设置测试数据的列名和列数,确保与训练模型时使用的数据集一致:
```R
colnames(adult1_test) <- colnames(svm_model)
```
如果测试数据的列名和列数与训练模型时使用的数据集一致,但仍然出现错误,请提供更多关于训练模型和测试数据的代码和数据的细节,以便我可以帮助你进一步解决问题。
相关问题
pred_svm_test <- predict(svm_model, adult1_test, type = 'response') Error in .local(object, ...) : test vector does not match model ! > pred_svm_test <- predict(svm_model, type = 'response') > confusionMatrix(pred_svm_test, adult1_test$class) Error in table(data, reference, dnn = dnn, ...) : 所有参数的长度都应一致
这个错误是由于参数长度不一致引起的。在计算混淆矩阵时,你需要确保预测结果和实际类别的长度相同。根据你提供的错误信息,问题可能出在预测结果 `pred_svm_test` 和实际类别 `adult1_test$class` 的长度不一致。
请确保在使用 `predict()` 函数进行预测时,只传递测试数据,而不是训练数据。修改代码如下:
```R
pred_svm_test <- predict(svm_model, newdata = adult1_test, type = 'response')
```
然后,再次检查预测结果和实际类别的长度是否一致:
```R
length(pred_svm_test)
length(adult1_test$class)
```
如果它们的长度不一致,可能有其他问题导致预测结果和实际类别不匹配。请提供更多关于模型训练和预测过程的代码和数据的细节,以便我可以帮助你进一步解决问题。
# 导入需要的库import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVCfrom sklearn.metrics import accuracy_score, confusion_matrix# 读取 Excel 表格数据df = pd.read_excel('data.xlsx')# 分离特征变量和因变量X = df.iloc[:, :-1]y = df.iloc[:, -1]# 将数据分为训练集和验证集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 训练支持向量机模型svm = SVC(kernel='linear')svm.fit(X_train, y_train)# 预测新的数据new_data = pd.read_excel('new_data.xlsx')y_pred = svm.predict(new_data)# 输出预测结果到 Excel 表格new_data['Prediction'] = y_prednew_data.to_excel('predictions.xlsx', index=False)# 输出模型精度和混淆矩阵print('Accuracy:', accuracy_score(y_test, svm.predict(X_test)))print('Confusion Matrix:', confusion_matrix(y_test, svm.predict(X_test)))输出混淆矩阵图片
由于我是一个文本AI模型,无法在这里直接输出图片,但是可以通过代码生成并保存混淆矩阵图片,代码如下:
```python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.metrics import confusion_matrix
# 读取 Excel 表格数据
df = pd.read_excel('data.xlsx')
# 分离特征变量和因变量
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# 将数据分为训练集和验证集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练支持向量机模型
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)
# 预测新的数据
new_data = pd.read_excel('new_data.xlsx')
y_pred = svm.predict(new_data)
# 输出预测结果到 Excel 表格
new_data['Prediction'] = y_pred
new_data.to_excel('predictions.xlsx', index=False)
# 输出模型精度和混淆矩阵
print('Accuracy:', accuracy_score(y_test, svm.predict(X_test)))
confusion = confusion_matrix(y_test, svm.predict(X_test))
print('Confusion Matrix:', confusion)
# 生成混淆矩阵图片并保存
plt.figure(figsize=(8, 6))
sns.heatmap(confusion, annot=True, cmap='Blues')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title('Confusion Matrix')
plt.savefig('confusion_matrix.png')
```
这段代码会在运行时生成一个名为 `confusion_matrix.png` 的图片文件,保存在当前工作目录下。你可以打开该文件查看混淆矩阵图片。
阅读全文