vits-fast-fine-tuning google colab
时间: 2023-09-18 21:14:38 浏览: 194
Sure! Here are the steps to fine-tune ViT-S on a custom dataset using Google Colab:
1. Open a new Google Colab notebook and select a GPU runtime environment.
2. Install the necessary libraries:
```
!pip install torch torchvision
!pip install timm
```
3. Download and prepare the custom dataset. You can use any dataset of your choice. Make sure to split it into training and validation sets.
4. Define the data loaders:
```
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
# Define the transformations
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_val = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Define the data loaders
train_dataset = ImageFolder('path_to_train_data', transform=transform_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
val_dataset = ImageFolder('path_to_val_data', transform=transform_val)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)
```
Replace 'path_to_train_data' and 'path_to_val_data' with the paths to your training and validation data folders, respectively.
5. Load the pre-trained ViT-S model:
```
import timm
model = timm.create_model('vit_small_patch16_224', pretrained=True)
```
6. Modify the last layer of the model to fit your custom dataset:
```
import torch.nn as nn
num_classes = len(train_dataset.classes)
model.head = nn.Sequential(
nn.LayerNorm((768,)),
nn.Linear(768, num_classes)
)
```
Replace '768' with the hidden size of the model you are using. For ViT-S, it is 768.
7. Define the optimizer and criterion:
```
import torch.optim as optim
optimizer = optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.CrossEntropyLoss()
```
8. Fine-tune the model:
```
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
val_loss = 0.0
correct = 0
total = 0
# Train the model
model.train()
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
# Evaluate the model on validation set
model.eval()
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_loss = train_loss / len(train_loader.dataset)
val_loss = val_loss / len(val_loader.dataset)
accuracy = 100 * correct / total
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f} \tAccuracy: {:.2f}'.format(
epoch+1, train_loss, val_loss, accuracy))
```
9. Save the model:
```
torch.save(model.state_dict(), 'path_to_save_model')
```
Replace 'path_to_save_model' with the path where you want to save the model.
That's it! You have fine-tuned ViT-S on your custom dataset using Google Colab.
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)