在jupyter中使用def kNN_classify(k, X_train, y_train, x): #distances = [sqrt(np.sum((x_train - x)**2)) for x_train in X_train] distances = np.sqrt(np.sum((X_train - x)**2,axis=1)) nearest = np.argsort(distances) #topK_y = [y_train[i] for i in nearest[0:k]] topK_y = y_train[ nearest[0:k] ] votes = Counter(topK_y) return votes.most_common()[0][0]和sklearn中的train_test_split求出测试集上的准确度
时间: 2023-05-12 11:04:46 浏览: 115
knn.rar_K._KNN K_knn_knn matlab
这是一个kNN分类器的函数,它需要四个参数:
1. k:表示kNN算法中的k值,即选择最近的k个邻居进行分类。
2. X_train:表示训练集的特征矩阵,每一行代表一个样本的特征向量。
3. y_train:表示训练集的标签向量,每个元素代表一个样本的类别。
4. x:表示待分类的样本的特征向量。
函数的作用是根据训练集中的样本和标签,对待分类的样本进行分类,并返回分类结果。
阅读全文