用python 实现啊
时间: 2023-07-12 08:12:54 浏览: 68
基于Python算法实现
好的,以下是使用Python实现自引导滤波增强掌纹特征的代码示例:
```python
import cv2
import numpy as np
def guided_filter(I, p, r, eps):
# 计算均值和方差
mean_I = cv2.boxFilter(I, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(I*I, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(I*p, cv2.CV_64F, (r, r))
# 计算方差和协方差
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
# 计算a和b
a = cov_Ip / (var_I + eps)
b = mean_p - a * mean_I
# 计算均值和方差
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
# 计算q
q = mean_a * I + mean_b
return q
# 读取掌纹图像
img = cv2.imread("palm.jpg", cv2.IMREAD_GRAYSCALE)
# 计算梯度信息
gx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
gy = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
g = np.sqrt(gx*gx + gy*gy)
# 计算局部方差
var = cv2.GaussianBlur(img, (3, 3), 0)
var = cv2.Laplacian(var, cv2.CV_64F)
var = np.abs(var)
# 计算自相似权重
w1 = cv2.matchTemplate(img, img, cv2.TM_CCOEFF_NORMED)
w2 = cv2.matchTemplate(g, g, cv2.TM_CCOEFF_NORMED)
w = w1 * w2
# 计算自引导权重
r = 5
eps = 0.01
q = guided_filter(img, img, r, eps)
w3 = 1.0 - cv2.absdiff(img, q) / 255.0
w = w * w3
# 计算最终权重
w = cv2.normalize(w, None, 0, 1, cv2.NORM_MINMAX)
w = cv2.GaussianBlur(w, (3, 3), 0)
# 应用滤波器
r = 20
eps = 0.001
enhanced = guided_filter(img, img, r, eps)
enhanced = cv2.normalize(enhanced, None, 0, 255, cv2.NORM_MINMAX)
# 显示增强后的掌纹图像
cv2.imshow("enhanced", enhanced.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在上述代码中,我们使用OpenCV库中的Sobel算子计算掌纹图像的梯度信息,使用高斯滤波器计算局部方差,使用matchTemplate函数计算自相似权重,使用guided_filter函数计算自引导权重和最终权重,最后将最终权重作为自引导滤波器的权重,应用滤波器对掌纹图像进行增强。
阅读全文