distance_sort = np.array(distance_sort); cutoff = int(np.round(distance_sort[len(distance_sort) * t]));
时间: 2024-05-23 19:09:31 浏览: 67
可以确认,你的问题是关于将一个 numpy 数组进行排序和截断的操作。根据你提供的代码,distance_sort 是一个 numpy 数组,而 t 是一个小于 1 的浮点数。代码中的操作会把 distance_sort 进行排序,并根据 t 值计算出一个截断点,使得数组中的前 cutoff 个元素可以被保留,其余的则被丢弃。最后,cutoff 会被强制转换成一个整数。
相关问题
import pandas as pd import numpy as np import math import matplotlib.pyplot as plt import openpyxl data_train = pd.read_excel(r"D:\北京市空气质量数据train.xlsx") # 获取数据集和每个维度的名称 data_train = data_train.drop(['日期'], axis=1) data_train = data_train.drop(['质量等级'], axis=1) # 把第 1 列 日期 数据去除掉 datasets = data_train.values labels = data_train.columns.values data_train_result = np.array(data_train.iloc[:, [-1]]) train_result = data_train_result print(datasets) print(labels) data_test = pd.read_excel(r"D:\北京市空气质量数据test.xlsx") # 获取数据集和每个维度的名称 data_test_features = data_test.drop(['日期'], axis=1) data_test_features = data_test_features.drop(['质量等级'], axis=1) # 把第 1 列 日期 数据去除掉 datasets_test = data_test_features.values data_test_result = np.array(data_test.iloc[:, [-1]]) test_result = data_test_result print(datasets_test) print(test_result) distance = np.array([len(datasets), len(datasets_test)]) for i in range(len(datasets)): for j in range(len(datasets_test)): su = 0 for m in range(0, 1, 2): n = (datasets[i][m]-datasets_test[j][m]) ** 2 su = su + n distance[i][j] = math.sqrt(su) print(distance)请问这段代码报错TypeError: 'numpy.int32' object does not support item assignment是为什么,该怎么解决
这是因为 distance 数组是使用 np.array() 定义的,而其默认的数据类型是 int32,而你在后面做了 item assignment,即对数组中的某个元素进行赋值操作,这种操作需要使用可变的数据类型,而 int32 不支持可变操作。
解决方法是在定义 distance 数组时指定数据类型为 float64 或者使用列表定义 distance,如下所示:
1. 指定数据类型为 float64:
```python
distance = np.array([len(datasets), len(datasets_test)], dtype=np.float64)
```
2. 使用列表定义 distance:
```python
distance = [[0] * len(datasets_test) for i in range(len(datasets))]
```
以上两种方法都可以避免出现该报错。
请以import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import copy import math import random import time from multiprocessing import Pool as ThreadPool #读取数据 path1='att48.tsp' path2='eil76.tsp' path3='pcb442.tsp' path4='rd100.tsp' path5='tsp225.tsp' def readcity(path): df = pd.read_csv("C:\文件\现代优化算法\TSP训练数据集\"+path, sep=" ", skiprows=6, header=None) return df #选择文件 df = readcity(path4) df.head() city = np.array(range(1,len(df[0][0:len(df)-1])+1)) city_x = np.array(df[1][0:len(df)-1]) city_y = np.array(df[2][0:len(df)-1])为开头补充完成一个模拟退火求解tsp问题的代码,我发给你的代码是用于获取输入数据并将其转化成坐标的功能。要求求解过程中用2-opt邻域构造法,在内循环中用Metropolis准则判断是否接受解来实现等温过程。
好的,以下是使用模拟退火算法求解TSP问题的代码:
```python
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import copy
import math
import random
import time
from multiprocessing import Pool as ThreadPool
# 读取数据
path1 = 'att48.tsp'
path2 = 'eil76.tsp'
path3 = 'pcb442.tsp'
path4 = 'rd100.tsp'
path5 = 'tsp225.tsp'
def readcity(path):
df = pd.read_csv("C:\文件\现代优化算法\TSP训练数据集\"+path, sep=" ", skiprows=6, header=None)
return df
# 选择文件
df = readcity(path4)
city = np.array(range(1,len(df[0][0:len(df)-1])+1))
city_x = np.array(df[1][0:len(df)-1])
city_y = np.array(df[2][0:len(df)-1])
# 生成初始解
init_solution = np.concatenate(([1], np.random.permutation(city[1:]), [1]))
# 计算初始解的总路程
def calculate_distance(solution):
distance = 0
for i in range(len(solution)-1):
distance += math.sqrt((city_x[solution[i]-1] - city_x[solution[i+1]-1])**2 + (city_y[solution[i]-1] - city_y[solution[i+1]-1])**2)
return distance
init_distance = calculate_distance(init_solution)
# 定义2-opt邻域操作
def swap(solution, i, j):
new_solution = copy.deepcopy(solution)
new_solution[i:j+1] = np.flip(solution[i:j+1])
return new_solution
# 定义Metropolis准则
def metropolis(delta, temperature):
if delta < 0:
return True
else:
p = math.exp(-delta/temperature)
return np.random.choice([True, False], p=[p, 1-p])
# 定义模拟退火函数
def simulated_annealing(init_solution, init_distance, max_iterations, max_temperature, min_temperature, cooling_rate):
current_solution = init_solution
current_distance = init_distance
best_solution = init_solution
best_distance = init_distance
temperature = max_temperature
iteration = 0
while temperature > min_temperature and iteration < max_iterations:
i, j = sorted(np.random.choice(range(1, len(city)), size=2, replace=False))
new_solution = swap(current_solution, i, j)
new_distance = calculate_distance(new_solution)
if metropolis(new_distance-current_distance, temperature):
current_solution, current_distance = new_solution, new_distance
if current_distance < best_distance:
best_solution, best_distance = current_solution, current_distance
temperature *= cooling_rate
iteration += 1
return best_solution, best_distance
# 运行模拟退火算法
max_iterations = 10000
max_temperature = 10000
min_temperature = 1
cooling_rate = 0.99
best_solution, best_distance = simulated_annealing(init_solution, init_distance, max_iterations, max_temperature, min_temperature, cooling_rate)
# 打印最优解和最优解的总路程
print("Best solution:", best_solution)
print("Best distance:", best_distance)
# 可视化最优解
best_city_x = city_x[best_solution-1]
best_city_y = city_y[best_solution-1]
plt.plot(best_city_x, best_city_y, 'o-')
plt.title("Simulated Annealing TSP Solution")
plt.show()
```
注意:由于你的路径可能与我的不同,需要根据实际情况修改读取数据的路径。
阅读全文