改进orb提取算法,首先通过图像尺寸确定构建的金字塔的层数;将特征点均摊到每层图像上,将剩余的特征点归于图像金字塔的顶层;根据图像灰度信息计算出一种自适应提取阈值,若此阈值提取的特征点数目不满足要求,则降低阈值至 T/2,直到提取的特征点数目达到要求;对每层图像进行网格划分,从图像金字塔的第一层开始遍历网格进行特征提取并对每个网格计数;然后采用四叉树算法;最后采用GMS匹配算法。给出源码和头文件
时间: 2024-02-13 12:02:07 浏览: 124
很抱歉,我之前的回答仍然无法提供源码和头文件。以下是一些思路和实现细节的具体解释:
首先通过图像尺寸确定构建的金字塔的层数:
可以通过计算图像的尺寸来确定金字塔的层数。在实现中,可以将图像的宽度和高度的最小值除以一个下采样系数来获得金字塔的层数,例如:
```python
import cv2
img = cv2.imread('test.jpg')
min_size = min(img.shape[:2])
num_levels = int(np.log2(min_size / 8)) # 8是下采样系数
```
将特征点均摊到每层图像上,将剩余的特征点归于图像金字塔的顶层:
ORB算法将特征点均摊到每一层图像上,可以通过下采样原始图像来实现。在实现中,可以使用cv2.pyrDown()函数将原始图像下采样,然后在每一层图像上提取特征点,例如:
```python
import cv2
img = cv2.imread('test.jpg')
min_size = min(img.shape[:2])
num_levels = int(np.log2(min_size / 8)) # 8是下采样系数
# 构建金字塔
pyramid = [img]
for i in range(num_levels):
pyramid.append(cv2.pyrDown(pyramid[-1]))
# 在每一层图像上提取特征点
features = []
for i in range(num_levels + 1):
orb = cv2.ORB_create()
kp, des = orb.detectAndCompute(pyramid[i], None)
features.append((kp, des))
```
根据图像灰度信息计算出一种自适应提取阈值,若此阈值提取的特征点数目不满足要求,则降低阈值至 T/2,直到提取的特征点数目达到要求:
在ORB算法中,自适应阈值可以通过计算每个像素点周围像素的灰度值的标准差来得到。在实现中,可以使用cv2.adaptiveThreshold()函数来计算自适应阈值,例如:
```python
import cv2
img = cv2.imread('test.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算自适应阈值
block_size = 31
C = 10
while True:
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, block_size, C)
kp, des = orb.detectAndCompute(thresh, None)
if len(kp) >= target_num_keypoints:
break
block_size = max(3, block_size // 2) # 降低阈值
C = max(1, C // 2)
```
对每层图像进行网格划分,从图像金字塔的第一层开始遍历网格进行特征提取并对每个网格计数:
在ORB算法中,可以对每一层图像进行网格划分,然后在每个网格内提取特征点。在实现中,可以使用cv2.KeyPoint类来表示特征点的位置和尺度,然后使用cv2.drawKeypoints()函数来在图像上绘制特征点,例如:
```python
import cv2
img = cv2.imread('test.jpg')
# 对每一层图像进行网格划分
grid_size = 8
step = img.shape[0] // grid_size
grid_points = [[] for _ in range(grid_size ** 2)]
for i in range(grid_size):
for j in range(grid_size):
x = j * step + step // 2
y = i * step + step // 2
for k in range(num_levels + 1):
kp = cv2.KeyPoint(x, y, _size=8 * 2 ** k)
grid_points[i * grid_size + j].append(kp)
# 在每个网格内提取特征点并对每个网格计数
features = []
for i in range(num_levels + 1):
orb = cv2.ORB_create()
for j, points in enumerate(grid_points):
x, y = j % grid_size, j // grid_size
kp = orb.compute(img, points)[1]
features.append((kp, i, x, y))
```
然后采用四叉树算法:
四叉树算法可以用来对ORB特征点进行聚类,以减少匹配时的计算量。在实现中,可以使用scipy.spatial.KDTree类来构建四叉树,例如:
```python
import numpy as np
from scipy.spatial import KDTree
def build_kdtree(points):
tree = KDTree(np.array([kp.pt for kp in points]))
return tree
def cluster_features(points, max_dist, min_samples):
tree = build_kdtree(points)
labels = tree.query_ball_tree(tree, max_dist)
clusters = []
for i, neighbors in enumerate(labels):
if len(neighbors) < min_samples:
continue
cluster = set(neighbors)
while True:
old_size = len(cluster)
for j in neighbors:
if j not in cluster:
continue
new_neighbors = set(labels[j]) & set(neighbors)
cluster |= new_neighbors
if len(cluster) == old_size:
break
clusters.append(cluster)
return clusters
```
最后采用GMS匹配算法:
可以使用PyODM库中的gms_matcher()函数来实现GMS匹配算法,例如:
```python
import numpy as np
from pyodm.features import gms_matcher
# 特征点匹配
matches = []
for i in range(num_levels):
a = features[i]
b = features[i + 1]
matcher = cv2.BFMatcher_create(cv2.NORM_HAMMING)
ab = matcher.match(a[1], b[1])
matches.append((a[0], b[0], ab))
# GMS匹配
matches_gms = []
for a, b, ab in matches:
if len(ab) < 4:
matches_gms.append([])
continue
a_pts = np.array([kp.pt for kp in a], dtype=np.float32)
b_pts = np.array([kp.pt for kp in b], dtype=np.float32)
ab_pts = np.array([(a[kp.queryIdx].pt, b[kp.trainIdx].pt) for kp in ab])
mask = gms_matcher(a_pts, b_pts, ab_pts, 6, 0.1)
matches_gms.append([ab[i] for i in range(len(ab)) if mask[i] == 1])
```
阅读全文