(log(1+(1.5-x+x*y)^2+(2.25-x+x*y^2)^2+(2.625-x+x*y^3)^2))/10求导数
时间: 2023-10-18 09:05:14 浏览: 178
我们可以先将该函数展开,得到:
f(x,y) = log(1 + (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2)/10
接下来,我们需要使用链式法则对该函数进行求导。具体来说,我们需要求出函数对 x 和 y 的偏导数。
首先,我们对 x 求偏导数:
∂f/∂x = 1/(10 * (1 + (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2)) * (-2 * (1.5 - x + xy) - 2 * (2.25 - x + xy^2) * (1 + 2 * xy) - 2 * (2.625 - x + xy^3) * (1 + 3 * xy^2))
然后,我们对 y 求偏导数:
∂f/∂y = 1/(10 * (1 + (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2)) * (-2 * (1.5 - x + xy) * x - 2 * (2.25 - x + xy^2) * (x + 2 * xy^2) - 2 * (2.625 - x + xy^3) * (x + 3 * xy^3))
因此,该函数的导数为:
(∂f/∂x, ∂f/∂y) = (1/(10 * (1 + (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2)) * (-2 * (1.5 - x + xy) - 2 * (2.25 - x + xy^2) * (1 + 2 * xy) - 2 * (2.625 - x + xy^3) * (1 + 3 * xy^2)), 1/(10 * (1 + (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2)) * (-2 * (1.5 - x + xy) * x - 2 * (2.25 - x + xy^2) * (x + 2 * xy^2) - 2 * (2.625 - x + xy^3) * (x + 3 * xy^3)))
阅读全文