稀疏自编码器的tensorflow代码
时间: 2023-09-03 15:15:17 浏览: 138
以下是一个简单的稀疏自编码器的 TensorFlow 代码示例:
```python
import tensorflow as tf
# 定义输入和隐藏层维度
input_dim = 784
hidden_dim = 128
rho = 0.01 # sparsity 系数
# 定义输入占位符
input_x = tf.placeholder(tf.float32, [None, input_dim])
# 定义权重和偏置项
W1 = tf.Variable(tf.random_uniform([input_dim, hidden_dim], -0.1, 0.1))
b1 = tf.Variable(tf.zeros([hidden_dim]))
W2 = tf.Variable(tf.random_uniform([hidden_dim, input_dim], -0.1, 0.1))
b2 = tf.Variable(tf.zeros([input_dim]))
# 定义隐藏层和输出层
hidden_layer = tf.nn.sigmoid(tf.matmul(input_x, W1) + b1)
output_layer = tf.matmul(hidden_layer, W2) + b2
# 定义代价函数,包括重构误差和稀疏性惩罚项
rho_hat = tf.reduce_mean(hidden_layer, axis=0)
reconstruction_loss = 0.5 * tf.reduce_mean(tf.square(input_x - output_layer))
kl_divergence = tf.reduce_sum(rho * tf.log(rho / rho_hat) + (1 - rho) * tf.log((1 - rho) / (1 - rho_hat)))
cost = reconstruction_loss + kl_divergence
# 定义优化器
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost)
# 初始化变量
init = tf.global_variables_initializer()
# 运行图
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
# 获取 MNIST 数据
batch_x, _ = mnist.train.next_batch(100)
# 运行优化器
sess.run(optimizer, feed_dict={input_x: batch_x})
# 计算代价
c = sess.run(cost, feed_dict={input_x: batch_x})
if i % 100 == 0:
print("Epoch:", '%04d' % (i+1), "cost=", "{:.9f}".format(c))
```
在这个例子中,我们定义了输入层和隐藏层的维度,然后定义了权重和偏置项。接下来,我们定义了隐藏层和输出层,并计算代价函数,包括重构误差和稀疏性惩罚项。最后,我们定义了优化器,并在训练循环中运行它。
阅读全文