def LocKeyJSON(self, logfldr): log.debug("Loc Keyps_Feature") keyps_feature = [] keyps_data = {} i = 0 for data in self.loc_dataloader: loc_x, loc_y = data _, _, predictions = self.model(loc_x.cuda().float()) predictions = np.array(predictions.cpu().detach().numpy()) predictions = predictions.flatten() predictions = predictions.tolist() keyps_data[i] = predictions i += 1 json.dumps(keyps_data) with open(logfldr + '/keyps_feature.json', 'a') as t: json.dump(keyps_data, t)

时间: 2024-02-15 21:29:01 浏览: 34
这段代码是用来生成一个叫做 "keyps_feature.json" 的文件,其中包含一个字典,这个字典的键为 0 到 n-1,值为一个列表,其中包含了模型对于某些输入数据的预测结果。具体来说,这个模型会读入一个叫做 "self.loc_dataloader" 的数据集,对于数据集中的每一个数据点,模型会对其进行预测,并将预测结果添加到字典中。最后,这个字典会被转换成 JSON 格式,并写入到 "keyps_feature.json" 文件中。
相关问题

解释代码: def __init__(self, X, n_components, start_df, random_state, init_type): self.loc_, self.scale_, self.scale_inv_chole_, self.scale_chole_ = \ self.initialize_params(X, n_components, random_state, init_type) self.df_ = np.full(shape=n_components, fill_value=start_df) self.resp = None self.a_nm, self.b_nm = None, None self.E_gamma = None self.E_log_gamma = None self.E_log_weights = None self.wishart_vm = None self.kappa_m = None self.eta_m = None

这段代码定义了一个 Python 类的初始化方法 `__init__`。这个方法接收参数 `X`,`n_components`,`start_df`,`random_state` 和 `init_type`。 初始化方法会使用 `initialize_params` 方法对 `self.loc_`,`self.scale_`,`self.scale_inv_chole_` 和 `self.scale_chole_` 进行赋值。 然后,`self.df_` 将使用 `np.full` 方法创建一个 shape 为 `n_components`,元素都是 `start_df` 的数组。 其他变量 `self.resp`,`self.a_nm`,`self.b_nm`,`self.E_gamma`,`self.E_log_gamma`,`self.E_log_weights`,`self.wishart_vm`,`self.kappa_m` 和 `self.eta_m` 都被初始化为 `None`。

def add_shopping(self): self.get(User_shopping_process.URL_shopping.value) self.click(User_shopping_process.LOC_搜索框) self.send_keys(User_shopping_process.LOC_搜索框,'直磨机') self.click(User_shopping_process.LOC_搜索按钮) hand = self.get_handles() self.click(User_shopping_process.LOC_商品框) self.switch_window(hand) self.click(User_shopping_process.LOC_型号) > self.execute_script("arguments[0].removeAttribute('readonly')", User_shopping_process.LOC_数量) E TypeError: User_shopping.execute_script() takes 2 positional arguments but 3 were given

这个错误提示是因为在调用 `execute_script` 方法时传入了 3 个参数,但该方法只接受 2 个参数。可以尝试修改代码如下: ``` def add_shopping(self): self.get(User_shopping_process.URL_shopping.value) self.click(User_shopping_process.LOC_搜索框) self.send_keys(User_shopping_process.LOC_搜索框,'直磨机') self.click(User_shopping_process.LOC_搜索按钮) hand = self.get_handles() self.click(User_shopping_process.LOC_商品框) self.switch_window(hand) self.execute_script("arguments[0].removeAttribute('readonly')", User_shopping_process.LOC_数量) self.click(User_shopping_process.LOC_型号) ``` 这样就可以避免传入多余的参数,执行脚本时也不会出现错误了。

相关推荐

帮我给每一行代码添加注释 class DeepKalmanFilter(nn.Module): def __init__(self, config): super(DeepKalmanFilter, self).__init__() self.emitter = Emitter(config.z_dim, config.emit_hidden_dim, config.obs_dim) self.transition = Transition(config.z_dim, config.trans_hidden_dim) self.posterior = Posterior( config.z_dim, config.post_hidden_dim, config.obs_dim ) self.z_q_0 = nn.Parameter(torch.zeros(config.z_dim)) self.emit_log_sigma = nn.Parameter(config.emit_log_sigma * torch.ones(config.obs_dim)) self.config = config @staticmethod def reparametrization(mu, sig): return mu + torch.randn_like(sig) * sig @staticmethod def kl_div(mu0, sig0, mu1, sig1): return -0.5 * torch.sum(1 - 2 * sig1.log() + 2 * sig0.log() - (mu1 - mu0).pow(2) / sig1.pow(2) - (sig0 / sig1).pow(2)) def loss(self, obs): time_step = obs.size(1) batch_size = obs.size(0) overshoot_len = self.config.overshooting kl = torch.Tensor([0]).to(self.config.device) reconstruction = torch.Tensor([0]).to(self.config.device) emit_sig = self.emit_log_sigma.exp() for s in range(self.config.sampling_num): z_q_t = self.z_q_0.expand((batch_size, self.config.z_dim)) for t in range(time_step): trans_loc, trans_sig = self.transition(z_q_t) post_loc, post_sig = self.posterior(trans_loc, trans_sig, obs[:, t]) z_q_t = self.reparametrization(post_loc, post_sig) emit_loc = self.emitter(z_q_t) reconstruction += ((emit_loc - obs[:, t]).pow(2).sum(dim=0) / 2 / emit_sig + self.emit_log_sigma * batch_size / 2).sum() if t > 0: over_loc, over_sig = self.transition(overshooting[:overshoot_len - 1]) over_loc = torch.cat([trans_loc.unsqueeze(0), over_loc], dim=0) over_sig = torch.cat([trans_sig.unsqueeze(0), over_sig], dim=0) else: over_loc = trans_loc.unsqueeze(0) over_sig = trans_sig.unsqueeze(0) overshooting = self.reparametrization(over_loc, over_sig) kl = kl + self.kl_div(post_loc.expand_as(over_loc), post_sig.expand_as(over_sig), over_loc, over_sig) / min(t + 1, self.config.overshooting) reconstruction = reconstruction / self.config.sampling_num kl = kl / self.config.sampling_num return reconstruction, kl

def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio') self.ax8 = plt.subplot(self.gs[3, 1]) row_labels = [ 'Initial number of clients', 'Average connected clients', 'Average bandwidth usage', 'Average load factor of slices', 'Average coverage ratio', 'Average block ratio', 'Average handover ratio', ] l, r = self.xlim cell_text = [ [f'{len(self.clients)}'], [f'{mean(vals[l:r]):.2f}'], [f'{format_bps(mean(vals1[l:r]), return_float=True)}'], [f'{mean(vals2[l:r]):.2f}'], [f'{mean(vals4[l:r]):.2f}'], [f'{mean(vals5[l:r]):.4f}'], [f'{mean(vals6[l:r]):.4f}'], ] self.ax8.axis('off') self.ax8.axis('tight') self.ax8.tick_params(axis='x', which='major', pad=15) self.ax8.table(cellText=cell_text, rowLabels=row_labels, colWidths=[0.35, 0.2], loc='center right') plt.tight_layout() 更改为只输出其中的第一行第一列的图片

import pandas as pdimport numpy as npimport talibimport tushare as ts# 先写出回测框架class Backtest(): def __init__(self, data, init_balance): self.data = data self.init_balance = init_balance self.position = 0 self.balance = init_balance self.equity = 0 def update_balance(self, price): self.equity = self.position * price self.balance = self.balance + self.equity def run(self, strategy): for i in range(1, len(self.data)): signal = strategy.generate_signal(self.data.iloc[:i, :]) price = self.data.iloc[i, 0] # 按照信号来调整持仓 if signal == 1: self.position = np.floor(self.balance / price) # 买入所有可用资金 elif signal == -1: self.position = 0 # 卖出所有股票 self.update_balance(price) print("日期:", self.data.index[i], "价格:", price, "信号:", signal, "账户价值:", self.balance) # 输出最后的回测结果 print("回测结果: 最开始的账户余额为", self.init_balance, ",最终的账户余额为", self.balance, ",因此您的盈亏为", self.balance-self.init_balance)# 再写出策略类class MACD_Strategy(): def __init__(self, fast_period, slow_period, signal_period): self.fast_period = fast_period self.slow_period = slow_period self.signal_period = signal_period def generate_signal(self, data): macd, signal, hist = talib.MACD(data["close"], fastperiod=self.fast_period, slowperiod=self.slow_period, signalperiod=self.signal_period) if hist[-1] > 0 and hist[-2] < 0: return 1 # 金叉,买入 elif hist[-1] < 0 and hist[-2] > 0: return -1 # 死叉,卖出 else: return 0 # 无操作# 最后的主程序if __name__ == "__main__": # 下载数据 data = ts.get_hist_data("600000", start="2020-01-01", end="2021-01-01") data = data.sort_index() # 按日期排序 data = data.loc[:, ["open", "high", "close", "low", "volume"]] # 只保留这五列 data.index = pd.to_datetime(data.index) # 初始化回测 backtest = Backtest(data, init_balance=100000) # 初始化策略 strategy = MACD_Strategy(fast_period=12, slow_period=26, signal_period=9) # 运行回测 backtest.run(strategy)

最新推荐

recommend-type

grpcio-1.48.1-cp37-cp37m-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

Anaconda3-2024.02-1-Windows-x86-64.exe

Anaconda是一个开源的Python发行版本,它包含了conda、Python等多个科学包及其依赖项。Anaconda的特点在于其集成了包和环境管理器conda,这使得用户可以方便地安装、更新、卸载和管理软件包及其依赖项。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

id=1 and 1=3 union select 1,group_concat(uismkhbuow_name) from xtfrfdxcsk.uismkhbuow ;哪错了

这是一个 SQL 注入攻击的语句,其中 `1=3` 是永远不成立的条件,所以整个语句都是错误的。这个语句的目的是通过注入一段查询语句,来获取 `xtfrfdxcsk.uismkhbuow` 表中的数据。但是这样的操作是非法的,不仅会破坏数据库的完整性和安全性,还可能触犯法律。建议不要尝试进行 SQL 注入攻击。