import cv2 import numpy as np import PIL.ImageDraw SCALE = 0.65156853729882650681169151675877 # m/px def add_chinese_text(img, text, position, textColor, textSize): img = PIL.Image.fromarray(img) draw = PIL.ImageDraw.Draw(img) fontStyle = PIL.ImageFont.truetype('simsun.ttc', textSize, encoding='utf-8') draw.text(position, text, textColor, font=fontStyle, stroke_width=1) return np.asarray(img) def main(): # 读取verts with open('verts.txt', 'r', encoding='utf8') as f: verts = f.readlines() verts = list(map(lambda x: x.split(), verts)) verts = list(map(lambda x: [x[0], int(x[1]), int(x[2])], verts)) print(f'{verts=}') # 读取edges with open('edges.txt', 'r', encoding='utf8') as f: edges = f.readlines() edges = list(map(lambda x: x.split(), edges)) edges = list(map(lambda x: [int(x[0]), int(x[1])], edges)) print(f'{edges=}') # 显示地图 im = cv2.imread('map.png') for edge in edges: v1 = verts[edge[0]] # 边关联的点1 v2 = verts[edge[1]] # 边关联的点2 weight = int((((v1[1] - v2[1]) ** 2 + (v1[2] - v2[2]) ** 2) ** 0.5) * SCALE) # 权重为两点欧氏距离 cv2.line(im, (v1[1], v1[2]), (v2[1], v2[2]), (255, 0, 0), 5) # 绘制边的直线 im = add_chinese_text(im, str(weight), ((v1[1] + v2[1]) // 2, (v1[2] + v2[2]) // 2), (255, 0, 255), 30) # 绘制边的权重 for i, vert in enumerate(verts): cv2.circle(im, (vert[1], vert[2]), 20, (255, 0, 0), 2) # 绘制顶点圆圈 im = add_chinese_text(im, str(i), (vert[1] - 15, vert[2] - 15), (255, 0, 255), 30) # 绘制顶点圈中序号数字 im = add_chinese_text(im, vert[0], (vert[1] - 40, vert[2] + 25), (255, 0, 255), 30) # 绘制顶点下方文字 cv2.namedWindow('map', cv2.WINDOW_KEEPRATIO) cv2.imshow('map', im) cv2.waitKey() if __name__ == '__main__': main()解释代码

时间: 2023-02-06 20:51:55 浏览: 173
这段代码中包含了三个导入语句: - `import cv2`:这个语句用来导入 OpenCV 库,OpenCV 是一个计算机视觉库,提供了很多图像处理和视频分析的功能。 - `import numpy as np`:这个语句用来导入 numpy 库,numpy 是一个 Python 的数值计算库,提供了大量的数组和矩阵运算的功能。 - `import PIL.ImageDraw`:这个语句用来导入 Python Imaging Library (PIL) 中的 ImageDraw 模块,ImageDraw 模块提供了画图的功能。 此外,这段代码还定义了一个常量 `SCALE`,值为一个浮点数。
相关问题

import cv2 import numpy as np import PIL.ImageDraw SCALE = 0.65156853729882650681169151675877 # m/px def add_chinese_text(img, text, position, textColor, textSize): img = PIL.Image.fromarray(img) draw = PIL.ImageDraw.Draw(img) fontStyle = PIL.ImageFont.truetype('simsun.ttc', textSize, encoding='utf-8') draw.text(position, text, textColor, font=fontStyle, stroke_width=1) return np.asarray(img) def main(): # 读取verts with open('verts.txt', 'r', encoding='utf8') as f: verts = f.readlines() verts = list(map(lambda x: x.split(), verts)) verts = list(map(lambda x: [x[0], int(x[1]), int(x[2])], verts)) print(f'{verts=}') # 读取edges with open('edges.txt', 'r', encoding='utf8') as f: edges = f.readlines() edges = list(map(lambda x: x.split(), edges)) edges = list(map(lambda x: [int(x[0]), int(x[1])], edges)) print(f'{edges=}') # 显示地图 im = cv2.imread('map.png') for edge in edges: v1 = verts[edge[0]] # 边关联的点1 v2 = verts[edge[1]] # 边关联的点2 weight = int((((v1[1] - v2[1]) ** 2 + (v1[2] - v2[2]) ** 2) ** 0.5) * SCALE) # 权重为两点欧氏距离 cv2.line(im, (v1[1], v1[2]), (v2[1], v2[2]), (255, 0, 0), 5) # 绘制边的直线 im = add_chinese_text(im, str(weight), ((v1[1] + v2[1]) // 2, (v1[2] + v2[2]) // 2), (255, 0, 255), 30) # 绘制边的权重 for i, vert in enumerate(verts): cv2.circle(im, (vert[1], vert[2]), 20, (255, 0, 0), 2) # 绘制顶点圆圈 im = add_chinese_text(im, str(i), (vert[1] - 15, vert[2] - 15), (255, 0, 255), 30) # 绘制顶点圈中序号数字 im = add_chinese_text(im, vert[0], (vert[1] - 40, vert[2] + 25), (255, 0, 255), 30) # 绘制顶点下方文字 cv2.namedWindow('map', cv2.WINDOW_KEEPRATIO) cv2.imshow('map', im) cv2.waitKey() if __name__ == '__main__': main()

这段代码导入了三个模块: 1. cv2:这是一个用于计算机视觉的库,可以用来处理图像和视频数据。 2. numpy:这是一个用于科学计算的库,主要用于处理数组和矩阵的运算。 3. PIL.ImageDraw:这是 Python Imaging Library (PIL) 中的一个模块,用于在图像上绘图。 SCALE 这个常量的值是一个浮点数,代表一个缩放比例。

校园地图服务系统的设计与实现中导入的下列模块import cv2 import numpy as np import PIL.ImageDraw作出300字简述

校园地图服务系统的设计与实现中导入的模块可以帮助开发人员实现地图的图像处理、数值运算和图像绘制功能。 cv2模块是一个开源的计算机视觉库,提供了许多图像处理功能,如图像读取、转换、展示、滤波、直方图均衡化、边缘检测、轮廓提取、形态学变换、霍夫变换等。这些功能在校园地图服务系统中可以用来读取地图图像,调整图像尺寸、对比度、亮度,提取地图边界线条等。 numpy是一个Python的数值计算库,提供了高性能的矩阵运算功能。这个模块中的np对象可以方便地进行数组创建、访问、修改、运算、统计等操作。在校园地图服务系统中,可以用numpy实现地图坐标系的转换、路径规划算法、地图匹配等功能。 PIL是Python图像处理库,提供了图像绘制和修改的功能。PIL.ImageDraw模块中的Draw对象可以用来在图像上绘制线条、矩形、圆形、文字等图形。在校园地图服务系统中,可以用PIL.ImageDraw绘制地图标
阅读全文

相关推荐

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') 将上述代码中引入超像素池化代码:import cv2 import numpy as np # 读取图像 img = cv2.imread('3.jpg') # 定义超像素分割器 num_segments = 60 # 超像素数目 slic = cv2.ximgproc.createSuperpixelSLIC(img, cv2.ximgproc.SLICO, num_segments) # 进行超像素分割 slic.iterate(10) # 获取超像素标签和数量 labels = slic.getLabels() num_label = slic.getNumberOfSuperpixels() # 对每个超像素进行池化操作,这里使用平均值池化 pooled = [] for i in range(num_label): mask = labels == i region = img[mask] pooled.append(region.mean(axis=0)) # 将池化后的特征图可视化 pooled = np.array(pooled, dtype=np.uint8) pooled_features = pooled.reshape(-1) pooled_img = cv2.resize(pooled_features, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST) print(pooled_img.shape) cv2.imshow('Pooled Image', pooled_img) cv2.waitKey(0),并显示超像素池化后的特征图

帮我分析一下下面代码有什么问题:#模型导入 import paddlehub as hub ocr = hub.Module(name="chinese_ocr_db_crnn_server") import cv2 import numpy as np from PIL import ImageFont,ImageDraw,Image def drawText(text, width, height, file): #创建一张全白的图片用来绘制中文 img = np.full((height, width, 3),fill_value=255,dtype=np.uint8) #文字大小 font_size = int(width/len(text)) - 5 #绘制中文 #cv2.putText(img, text ,(width - font_size/2, height - font_size/2),cv2.FONT_HERSHEY_SIMPLEX,1,(255,0,0),1) #导入字体文件 fontpath = "C:/Users/lenovo/Desktop/人工智能/chinese_cht.ttf" #设置字体的颜色 b,g,r,a = 0,0,0,0 #设置字体大小 font = ImageFont.truetype(fontpath, font_size) #将numpy array的图片格式转为PIL的图片格式 img_pil = Image.fromarray(img) #创建画板 draw = ImageDraw.Draw(img_pil) #在图片上绘制中文 draw.text((width/2 - int(len(text)*(font_size/2)), int(height/2 - font_size/2)), text, font=font, fill=(b,g,r,a)) #将图片转为numpy array的数据格式 img = np.array(img_pil) #保存图片 cv2.imwrite(f"txt/{file}",img) image_path = 'image.jpeg' # 读取测试文件夹test.txt中的照片路径 np_images =[cv2.imread(image_path)] results = ocr.recognize_text( images=np_images, # 图片数据,ndarray.shape 为 [H, W, C],BGR格式; use_gpu=False, # 是否使用 GPU;若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量 output_dir='ocr_result', # 图片的保存路径,默认设为 ocr_result; visualization=False, # 是否将识别结果保存为图片文件; box_thresh=0.5, # 检测文本框置信度的阈值; text_thresh=0.5) # 识别中文文本置信度的阈值; image = cv2.imread(image_path) for result in results: data = result['data'] save_path = result['save_path'] for infomation in data: loca = infomation['text_box_position'] print(loca, infomation['text']) crop_img = image[loca[0][1]:loca[2][1], loca[0][0]:loca[2][0]] # 保存小图片 cv2.imwrite('txt/' + str(loca[0][1]) + str(loca[2][1]) + '.jpg', crop_img) text = infomation['text'] drawText(text, loca[2][1] - loca[0][1], loca[2][0] - loca[0][0], str(loca[0][1]) + str(loca[2][1]) + "M.jpg")

from PIL import Image, ImageDraw # 将图片平移并旋转 gray2 = Image.fromarray(src) width, height = gray2.size # 计算中心点和X轴角度 center = (max_point[0], max_point[1]) angle = np.arctan2(point2[1] - max_point[1], point2[0] - max_point[0]) * 180 / np.pi img_translated = gray2.transform((width, height), Image.AFFINE, (1, 0, center[0] - width/2, 0, 1, center[1] - height/2), resample=Image.BICUBIC) img_translated_rotated = img_translated.rotate(angle, resample=Image.BICUBIC, expand=True) #img_translated_rotated.show() #裁剪 img4 = Image.fromarray(src) width1, height1 = img4.size width2, height2 = img_translated_rotated.size left = (width2 - width1 )/2 top = (height2 - height1 )/2 right = (width2 - width1 )/2 + width1 bottom = (height2 - height1 )/2 + height1 cropped_image = img_translated_rotated.crop((left, top, right, bottom )) import cv2 GRID_STEP = distance/2 # 设置1010栅格(暂时尝试) grid_num_x = 10 grid_num_y = 10 def transform_point_set(points, max_point, distance, angle): # 平移向量 translation_vector = np.array([distance * np.cos(anglenp.pi/180), distance * np.sin(anglenp.pi/180)]) # 旋转矩阵 rotation_matrix = np.array([[np.cos(anglenp.pi/180), -np.sin(anglenp.pi/180)], [np.sin(anglenp.pi/180), np.cos(angle*np.pi/180)]]) # 将点集转换为 numpy 数组 point_array = np.array(points) max_point_array = np.array(max_point) # 对点集进行平移和旋转 point_array = (point_array - max_point_array) @ rotation_matrix + max_point_array + translation_vector # 将 numpy 数组转换为列表 points2 = point_array.tolist() return points2 points2 = transform_point_set(points, max_point, distance, angle) print(points2) #第2.5部分(用作确认检验) from PIL import Image, ImageDraw #裁剪 img4 = Image.fromarray(src) width1, height1 = img4.size width2, height2 = img_translated_rotated.size left = (width2 - width1 )/2 top = (height2 - height1 )/2 right = (width2 - width1 )/2 + width1 bottom = (height2 - height1 )/2 + height1 cropped_image = img_translated_rotated.crop((left, top, right, bottom )) # 导入图片() img_array = np.asarray(cropped_image) img = Image.fromarray(img_array) draw = ImageDraw.Draw(img) for point in point

from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 # 加载图像 image = Image.open('img.png') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=100, compactness=10) # 可视化超像素标记图 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素标记图 segment_img.save('segments.jpg') n_segments = np.max(segments) + 1 # 初始化超像素块的区域 segment_regions = np.zeros((n_segments, img_np.shape[0], img_np.shape[1])) # 遍历每个超像素块 for i in range(n_segments): # 获取当前超像素块的掩码 mask = (segments == i) # 将当前超像素块的掩码赋值给超像素块的区域 segment_regions[i][mask] = 1 # 保存超像素块的区域 np.save('segment_regions.npy', segment_regions) # 加载超像素块的区域 segment_regions = np.load('segment_regions.npy') # 取出第一个超像素块的区域 segment_region = segment_regions[37] segment_region = (segment_region * 255).astype(np.uint8) # 显示超像素块的区域 plt.imshow(segment_region, cmap='gray') plt.show(),将上述超像素块添加黄色的边缘

最新推荐

recommend-type

Python Numpy:找到list中的np.nan值方法

import numpy as np x = np.array([2, 3, np.nan, 5, np.nan, 5, 2, 3]) # 简单查找np.nan值 for item in x: if np.isnan(item): print('yes') ``` 在这个例子中,`np.isnan(item)`函数被用来遍历数组`x`的每个...
recommend-type

基于微信小程序的社区门诊管理系统php.zip

基于Php语言设计并实现了微信小程序的社区门诊管理系统。该小程序基于B/S即所谓浏览器/服务器模式,选择MySQL作为后台数据库去开发并实现一个以微信小程序的社区门诊为核心的系统以及对系统的简易介绍。 用户注册,在用户注册页面通过填写账号、密码、确认密码、姓名、性别、手机、等信息进行注册操作; 用户登录,用户通过登录页面输入账号和密码,并点击登录进行小程序登录操作。 用户登陆微信端后,可以对首页、门诊信息、我的等功能进行详细操作 门诊信息,在门诊信息页面可以查看科室名称、科室类型、医生编号、医生姓名、 职称、坐诊时间、科室图片、点击次数、科室介绍等信息进行预约挂号操作 检查信息,在检查信息页面可以查看检查项目、检查地点、检查时间、检查费用、账号、姓名、医生编号、医生姓名、是否支付、审核回复、审核状态等信息进行支付操作
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

工程经济学自考必备软件下载

工程经济学自考必备软件下载
recommend-type

UML课程设计报告.doc

UML课程设计报告.doc
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。