<input type="hidden" name="filename" value="{{ denoised_filename }}">

时间: 2023-11-05 17:55:35 浏览: 25
<input type="hidden" name="filename" value="{{ denoised_filename }}">是一个HTML中的隐藏字段,用于在表单中传递数据,但不会显示给用户。该字段的值可以通过JavaScript或后端代码获取和处理。在这种情况下,{{ denoised_filename }}是一个动态的值,可能是一个文件名或其他数据。请注意,我无法获取和处理动态值,因此无法提供确切的答案。
相关问题

[filename, pathname] = uigetfile({'*.jpg';'*.png'}, '选择图片');%磨皮处理 if isequal(filename,0) disp('用户取消选择'); else Path=strcat(pathname,filename);%strcat横向拼接字符串得到所选文件的绝对路径 img=imread(Path);%通过绝对路径选择文件 noisy_img = imnoise(img, 'gaussian', 0.4); denoised_img = imgaussfilt(noisy_img, 10); app.Image.ImageSource=denoised_img; app.O=denoised_img; end

这段代码的作用是让用户选择一张图片,并对选择的图片进行磨皮处理。具体实现过程为:首先弹出一个文件选择框,让用户选择图片文件;然后读取所选文件的绝对路径,并用imread函数读取该文件;接着使用imnoise函数添加高斯噪声,再使用imgaussfilt函数对添加噪声后的图片进行高斯滤波,最后将处理后的图片作为图像源,同时保存到app.O变量中。

from bm3d import bm3d_rgb from experiment_funcs1 import get_experiment_noise, get_psnr, get_cropped_psnr from PIL import Image import argparse import os import torch import numpy as np from torchvision.utils import save_image def main(): imagename = './test_image1/(1271).jpg' save_dir = 'test_result' save_path = 'noise' y = np.array(Image.open(imagename)) / 255 noise_type = 'g3' noise_var = 0.02 seed = 0 noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape) z = np.atleast_3d(y) + np.atleast_3d(noise) y_est = bm3d_rgb(z, psd) psnr = get_psnr(y, y_est) print("PSNR:", psnr) y_est = np.minimum(np.maximum(y_est, 0), 1) z_rang = np.minimum(np.maximum(z, 0), 1) z_rang = torch.from_numpy(np.transpose(z_rang, (2, 0, 1))).float() y_est = torch.from_numpy(np.transpose(y_est, (2, 0, 1))).float() denoise_img_path = os.path.join(save_dir, 'denoised.jpg') save_image(y_est, denoise_img_path) noise_img_path = os.path.join(save_path, 'noise.jpg') save_image(z_rang, noise_img_path) if __name__ == '__main__': main()改为对灰度图处理

可以将代码中的`bm3d_rgb`函数改为`bm3d`函数,同时将读入图像的方式改为读入灰度图像即可。具体代码如下: ``` from bm3d import bm3d from experiment_funcs1 import get_experiment_noise, get_psnr, get_cropped_psnr from PIL import Image import argparse import os import torch import numpy as np from torchvision.utils import save_image def main(): imagename = './test_image1/(1271).jpg' save_dir = 'test_result' save_path = 'noise' y = np.array(Image.open(imagename).convert('L')) / 255 noise_type = 'g3' noise_var = 0.02 seed = 0 noise, psd, kernel = get_experiment_noise(noise_type, noise_var, seed, y.shape) z = y + noise y_est = bm3d(z, psd) psnr = get_psnr(y, y_est) print("PSNR:", psnr) y_est = np.minimum(np.maximum(y_est, 0), 1) z_rang = np.minimum(np.maximum(z, 0), 1) z_rang = torch.from_numpy(z_rang).unsqueeze(0).float() y_est = torch.from_numpy(y_est).unsqueeze(0).float() denoise_img_path = os.path.join(save_dir, 'denoised.jpg') save_image(y_est, denoise_img_path) noise_img_path = os.path.join(save_path, 'noise.jpg') save_image(z_rang, noise_img_path) if __name__ == '__main__': main() ```

相关推荐

将下面代码写成matlab形式 int runBm3d( const Mat image_noisy, Mat& image_basic, Mat& image_denoised ) { int Height = image_noisy.rows; int Width = image_noisy.cols; int Channels = image_noisy.channels(); vector<Mat> block_noisy;//store the patch vector<int>row_idx;//patch idx along the row direction vector<int>col_idx; GetAllBlock(image_noisy, Width, Height, Channels, kHard, pHard, block_noisy, row_idx, col_idx); int bn_r = row_idx.size(); int bn_c = col_idx.size(); tran2d(block_noisy, kHard); vector<int> sim_num;//index number for the selected similar patch in the block vector vector<int> sim_idx_row;//index number for the selected similar patch in the original Mat vector<int> sim_idx_col; vector<Mat>data;//store the data during transforming and shrinking Mat kaiser = gen_kaiser(beta, kHard);//2-D kaiser window float weight_hd = 1.0;//weights used for current relevent patch Mat denominator_hd(image_noisy.size(), CV_32FC1, Scalar::all(0)); Mat numerator_hd(image_noisy.size(), CV_32FC1, Scalar::all(0)); for (int i = 0; i < bn_r; i++) { for (int j = 0; j < bn_c; j++) { //for each pack in the block sim_num.clear(); sim_idx_row.clear(); sim_idx_col.clear(); data.clear(); getSimilarPatch(block_noisy, data, sim_num, i, j, bn_r, bn_c, int((nHard - kHard) / pHard) + 1, NHard, tao_hard);//block matching for (int k = 0; k < sim_num.size(); k++)//calculate idx in the left-top corner { sim_idx_row.push_back(row_idx[sim_num[k] / bn_c]); sim_idx_col.push_back(col_idx[sim_num[k] % bn_c]); } tran1d(data, kHard);//3-D transforming DetectZero(data, lambda3d * sigma);//shrink the cofficient weight_hd = calculate_weight_hd(data, sigma); Inver3Dtrans(data,kHard);//3-D inverse transforming aggregation(numerator_hd, denominator_hd, sim_idx_row, sim_idx_col, data, weight_hd, kHard, kaiser);//aggregation using weigths } } image_basic = numerator_hd / denominator_hd;

import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout from keras.callbacks import EarlyStopping # 读取csv文件 data = pd.read_csv('3c_left_1-6.csv') # 将数据转换为numpy数组 data = np.array(data) data = data.reshape((data.shape[0], 1, data.shape[1])) # 获取数据的维度信息 n_samples, n_timesteps, n_features = data.shape # 定义模型 model = Sequential() model.add(LSTM(64, input_shape=(n_timesteps, n_features), return_sequences=True)) model.add(Dropout(0.2)) # 添加Dropout层 model.add(Dense(n_features)) # 编译模型 model.compile(loss='mse', optimizer='adam') # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=5, mode='min', verbose=1) # 训练模型 model.fit(data, data, epochs=100, batch_size=32, validation_split=0.2, callbacks=[early_stopping]) # 对数据进行去噪 denoised_data = model.predict(data) # 计算去噪后的SNR,MSE,PSNR snr = np.mean(np.power(data, 2)) / np.mean(np.power(data - denoised_data, 2)) mse = np.mean(np.power(data - denoised_data, 2)) psnr = 10 * np.log10((np.power(data.max(), 2) / mse)) print("Signal-to-Noise Ratio (SNR): {:.2f} dB".format(snr)) print("Mean Squared Error (MSE): {:.2f}".format(mse)) print("Peak Signal-to-Noise Ratio (PSNR): {:.2f} dB".format(psnr)) # 将结果保存为csv文件 data = {'SNR': [snr], 'MSE': [mse], 'PSNR': [psnr]} df = pd.DataFrame(data) df.to_csv('indicator_lstm.csv', index=False) denoised_data = pd.DataFrame(denoised_data.reshape(n_samples, n_timesteps * n_features)) denoised_data.to_csv('denoised_data_lstm.csv', index=False)怎么减少神经元的个数

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

Wom6.3Wom6.3Wom6.3

Wom6.3Wom6.3Wom6.3
recommend-type

html网页版python语言pytorch框架的图像分类西瓜是否腐烂识别-含逐行注释和说明文档-不含图片数据集

本代码是基于python pytorch环境安装的cnn深度学习代码。 下载本代码后,有个环境安装的requirement.txt文本 运行环境推荐安装anaconda,然后再里面推荐安装python3.7或3.8的版本,pytorch推荐安装1.7.1或1.8.1版本。 首先是代码的整体介绍 总共是3个py文件,十分的简便 且代码里面的每一行都是含有中文注释的,小白也能看懂代码 然后是关于数据集的介绍。 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 在数据集文件夹下是我们的各个类别,这个类别不是固定的,可自行创建文件夹增加分类数据集 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01数据集文本生成制作.py,是将数据集文件夹下的图片路径和对应的标签生成txt格式,划分了训练集和验证集 运行02深度学习模型训练.py,会自动读取txt文本内的内容进行训练 运行03html_server.py,生成网页的url了 打开
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。