vns算法python

时间: 2023-08-17 17:07:21 浏览: 59
在Python中实现VNS(Variable Neighbourhood Search)算法可以按照以下步骤进行: 1. 定义一个包含不同邻域方法的邻域函数列表,例如`neighbourhood_funcs`,其中每个函数表示一个不同的邻域方法。这些函数将接受当前解和问题的权重作为输入,并返回一个新的邻域解。 2. 实现一个主要的变邻域搜索函数,例如`variable_neighbourhood
相关问题

变邻域搜索算法python

变邻域搜索(VNS)是一种基于局部搜索的启发式优化算法,它通过在不同的邻域内搜索来寻找最优解。以下是一个简单的变邻域搜索算法的 Python 实现: ```python import random def vns(solution, neighborhoods, max_iter): """ solution: 初始解 neighborhoods: 邻域生成函数列表 max_iter: 最大迭代次数 return: 最优解 """ best_solution = solution k = 1 while k <= max_iter: for neighborhood in neighborhoods: candidate = neighborhood(best_solution) if candidate < best_solution: best_solution = candidate k = 1 break else: k += 1 return best_solution ``` 在这个实现中,我们将初始解作为当前的最优解,然后在每个邻域内搜索,如果找到更优的解,则更新当前的最优解。如果在某个邻域内达到了 `max_iter` 次未找到更优的解,则递增 `k` 值,进入下一个邻域的搜索。如果找到了更优的解,则将 `k` 重置为 1,重新从第一个邻域开始搜索。 在使用这个算法时,我们需要定义一个或多个邻域生成函数。邻域生成函数将当前解作为输入,返回一个新的解。例如,以下是一个简单的邻域生成函数,它随机交换解中的两个元素: ```python def swap_neighborhood(solution): """ 随机交换解中的两个元素 """ n = len(solution) i, j = random.randint(0, n-1), random.randint(0, n-1) new_solution = solution.copy() new_solution[i], new_solution[j] = new_solution[j], new_solution[i] return new_solution ``` 我们可以将邻域生成函数组合成一个列表,然后传递给 `vns` 函数。例如,以下代码将使用上面的 `swap_neighborhood` 函数和另一个邻域生成函数来运行 VNS 算法: ```python neighborhoods = [swap_neighborhood, reverse_neighborhood] best_solution = vns(initial_solution, neighborhoods, max_iter) ```

jda算法的python代码实现

JDA算法(Joint Distribution Adaptation)是一种域适应方法,它通过对源域数据和目标域数据分别建模,利用最大化它们之间的相似性来实现跨域知识转移。本文将介绍如何使用Python实现JDA算法。 首先,需要导入以下库:numpy,scipy,sklearn,和Cython。其中Cython是Python语言的扩展,主要用于编写C语言的扩展模块。 初始化函数中,我们需要指定两个域的标签、源域特征和目标域特征。在建模之前,需要计算出两个域的协方差矩阵。 然后,我们需要用高斯核函数来计算源域和目标域的核矩阵。接着,通过解决广义特征值问题来获取最大化领域间距离的变换矩阵,该矩阵可以将源域和目标域的特征转换成低维表示。 最后,在训练完变换矩阵后,我们可以将它应用于测试数据,以获得更好的分类效果。 下面是JDA算法的Python代码实现: ``` import numpy as np from scipy import linalg from sklearn.metrics.pairwise import rbf_kernel from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array, check_random_state from scipy.spatial.distance import cdist from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression try: from .jda_cython import inner_jda except ImportError: print('Cython not found. To compile cython .pyx file you need ' 'to run command "python setup.py build_ext --inplace" in' '"jda_cython" folder') from .jda_python import inner_jda class JDA(BaseEstimator, TransformerMixin): def __init__(self, dim=30, n_iter=10, gamma=1.0, kernel='rbf', random_state=None): self.dim = dim self.n_iter = n_iter self.gamma = gamma self.kernel = kernel self.random_state = random_state def fit(self, X, y, Xt=None, yt=None): ''' Parameters ---------- X : array-like, shape (n_samples, n_features) Source data y : array-like, shape (n_samples, ) Source labels Xt : array-like, shape (n_target_samples, n_features), optional Target data yt : array-like, shape (n_target_samples,), optional Target labels Returns ------- self : object Returns self. ''' if Xt is None: # use the source data as target data as well Xt = X yt = y random_state = check_random_state(self.random_state) # compute the covariance matrices of the source and target domains Cs = np.cov(X.T) Ct = np.cov(Xt.T) # compute the kernel matrices of the source and target domains Ks = rbf_kernel(X, gamma=self.gamma) Kt = rbf_kernel(Xt, X, gamma=self.gamma) self.scaler_ = PCA(n_components=self.dim).fit( np.vstack((X, Xt))) Xs_pca = self.scaler_.transform(X) Xt_pca = self.scaler_.transform(Xt) X_pca = np.vstack((Xs_pca, Xt_pca)) V_src = np.eye(Xs_pca.shape[1]) V_trg = np.eye(Xt_pca.shape[1]) for i in range(self.n_iter): W = JDA._calculate_projection( X_pca, np.array(source_labels+target_labels), V_src, V_trg, Ks, Kt) Xs_pca = Xs_pca.dot(W) Xt_pca = Xt_pca.dot(W) self.W_ = W self.Xs_pca_ = Xs_pca self.Xt_pca_ = Xt_pca self.clf_ = LogisticRegression(random_state=random_state, solver='lbfgs', max_iter=1000, ) self.clf_.fit(Xs_pca, y) return self def transform(self, X): """Transforms data X using the fitted models Parameters ---------- X : array-like, shape (n_samples, n_features) Data to transform Returns ------- Xt_new : array, shape (n_samples, n_components) Transformed data """ return self.scaler_.transform(X).dot(self.W_) def fit_transform(self, X, y, Xt=None, yt=None): """Fit and transform data X using the fitted models Parameters ---------- X : array-like, shape (n_samples, n_features) Data to transform y : array-like, shape (n_samples, ) Labels Xt : array-like, shape (n_target_samples, n_features), optional Target data yt : array-like, shape (n_target_samples,), optional Target labels Returns ------- Xt_new : array, shape (n_target_samples, n_components) Transformed data """ self.fit(X, y, Xt, yt) return self.transform(Xt) @staticmethod def _calculate_projection(X, Y, V_src, V_trg, Ks, Kt): n = X.shape[0] ns = Ks.shape[0] nt = Kt.shape[0] eps = 1e-4 H_s = np.eye(ns) - 1.0 / ns * np.ones((ns, ns)) H_t = np.eye(nt) - 1.0 / nt * np.ones((nt, nt)) A = np.vstack((np.hstack((Ks + eps * np.eye(ns), np.zeros((ns, nt)))), np.hstack((np.zeros((nt, ns)), Kt + eps * np.eye(nt))))) B = np.vstack((H_s, H_t)) # solve the generalized eigenvalue problem Ax = lambda Bx lambda_, p = linalg.eig(A, B) # sort eigenvalues in ascending order idx = np.argsort(-lambda_.real) lambda_ = lambda_[idx] p = p[:, idx] t = Y c1 = 1.0 / ns * sum(p[:ns, :].T.dot(t == 1)) c2 = 1.0 / nt * sum(p[ns:, :].T.dot(t == -1)) MMD = sum(sum(p[:ns, :].T.dot(Ks).dot(p[:ns, :])) / ns ** 2 + sum(p[ns:, :].T.dot(Kt).dot(p[ns:, :])) / nt ** 2 - 2 * sum(p[:ns, :].T.dot(Kt).dot(p[ns:, :])) / (ns * nt)) # calculate the optimal projection matrix V = p[:ns, :].dot(np.diag(1.0 / lambda_[:ns])).dot( p[:ns, :].T).dot(H_s - H_t).dot(p[ns:, :]).dot( np.diag(1.0 / lambda_[ns:])).dot(p[ns:, :].T) # calculate the transformation matrix W = X.T.dot(V).dot(X) return W if __name__ == "__main__": np.random.seed(1234) # generate example data n = 100 d = 100 X = np.random.randn(n, d) y = np.concatenate((np.ones(n // 2, dtype=np.int), -np.ones(n // 2, dtype=np.int))) Xs = X[:n // 2, :] ys = y[:n // 2] Xt = X[n // 2:, :] yt = y[n // 2:] # train and evaluate model model = JDA(n_iter=10) Xt_new = model.fit_transform(Xs, ys, Xt, yt) clf = LogisticRegression(random_state=1234) clf.fit(model.transform(Xs), ys) print('Accuracy on source domain: {:.2f}%'.format(clf.score(model.transform(Xs), ys) * 100)) print('Accuracy on target domain: {:.2f}%'.format(clf.score(Xt_new, yt) * 100)) ``` 以上就是JDA算法的Python代码实现。我们可以使用上述代码来实现域适应问题中的知识转移。

相关推荐

最新推荐

recommend-type

k-means 聚类算法与Python实现代码

k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析 一、初始化聚类中心 首先随机...
recommend-type

Python用K-means聚类算法进行客户分群的实现

一、背景 1.项目描述 你拥有一个超市(Supermarket Mall)。通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数。 消费分数是根据客户行为和购买数据等定义的参数分配给客户的...
recommend-type

python中实现k-means聚类算法详解

算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到...
recommend-type

【K-means算法】{1} —— 使用Python实现K-means算法并处理Iris数据集

此处基于K-means算法处理Iris数据集 Kmeans.py模块: import numpy as np class KMeansClassifier(): """初始化KMeansClassifier类""" def __init__(self, k=3, initCent='random', max_iter=500): # 类的成员...
recommend-type

python用TensorFlow做图像识别的实现

就是利用TensorFlow的逻辑回归算法对数据库中的手写数字做识别,让机器找出规律,然后再导入新的数字让机器识别。 二、流程介绍 上图是TensorFlow的流程,可以看到一开始要先将参数初始化,然后导入训练数据,计算...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。