python pandas drop nan
时间: 2023-10-17 18:31:15 浏览: 154
利用PythonPandas进行数据预处理-数据清洗
5星 · 资源好评率100%
在Python的pandas库中,dropna()方法用于丢弃含有空值的行或列。通过调用dropna()方法,可以删除DataFrame中包含NaN值的行或列。
例如,使用numpy和pandas创建一个包含NaN值的DataFrame数据,然后使用dropna()方法删除含有NaN值的行或列。
首先,导入numpy和pandas库,并创建一个包含NaN值的DataFrame数据:
```
import numpy as np
import pandas as pd
a = np.ones((11, 10))
for i in range(len(a)):
a[i, :i = np.nan
d = pd.DataFrame(data=a)
print(d)
```
输出结果如下所示:
```
0 1 2 3 4 5 6 7 8 9
0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 NaN NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 NaN NaN NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN NaN 1.0 1.0 1.0 1.0 1.0
5 NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0 1.0
6 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0
7 NaN NaN NaN NaN NaN NaN NaN NaN 1.0 1.0
8 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
```
然后,可以使用dropna()方法删除含有NaN值的行或列。默认情况下,dropna()方法删除含有任何NaN值的行。
```
d.dropna()
```
这将删除含有NaN值的行后的结果如下所示:
```
Empty DataFrame
Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Index: []
```
如果需要删除含有NaN值的列,可以通过设置参数axis=1来实现:
```
d.dropna(axis=1)
```
这将删除含有NaN值的列后的结果如下所示:
```
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
总之,使用dropna()方法可以在Python的pandas库中删除含有NaN值的行或列。通过设置参数axis=1,可以删除含有NaN值的列。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Python-pandas的dropna()方法-丢弃含空值的行、列](https://blog.csdn.net/xiao_yi_xiao/article/details/123502982)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [利用PythonPandas进行数据预处理-数据清洗](https://download.csdn.net/download/weixin_38722721/15448785)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文