python pandas drop空值
时间: 2023-10-31 15:07:31 浏览: 130
可以使用 pandas 中的 dropna() 方法来删除 DataFrame 中的空值。示例代码如下:
```python
import pandas as pd
# 创建一个包含空值的 DataFrame
df = pd.DataFrame({'A': [1,2, None, 4], 'B': [5, None, 7, 8]})
print(df)
# 删除空值
df = df.dropna()
print(df)
```
输出结果如下:
```
A B
0 1.0 5.0
1 2.0 NaN
2 NaN 7.0
3 4.0 8.0
A B
0 1.0 5.0
3 4.0 8.0
```
相关问题
python pandas drop nan
在Python的pandas库中,dropna()方法用于丢弃含有空值的行或列。通过调用dropna()方法,可以删除DataFrame中包含NaN值的行或列。
例如,使用numpy和pandas创建一个包含NaN值的DataFrame数据,然后使用dropna()方法删除含有NaN值的行或列。
首先,导入numpy和pandas库,并创建一个包含NaN值的DataFrame数据:
```
import numpy as np
import pandas as pd
a = np.ones((11, 10))
for i in range(len(a)):
a[i, :i = np.nan
d = pd.DataFrame(data=a)
print(d)
```
输出结果如下所示:
```
0 1 2 3 4 5 6 7 8 9
0 NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 NaN NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 NaN NaN NaN NaN 1.0 1.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN NaN 1.0 1.0 1.0 1.0 1.0
5 NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0 1.0
6 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 1.0
7 NaN NaN NaN NaN NaN NaN NaN NaN 1.0 1.0
8 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0
9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
```
然后,可以使用dropna()方法删除含有NaN值的行或列。默认情况下,dropna()方法删除含有任何NaN值的行。
```
d.dropna()
```
这将删除含有NaN值的行后的结果如下所示:
```
Empty DataFrame
Columns: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Index: []
```
如果需要删除含有NaN值的列,可以通过设置参数axis=1来实现:
```
d.dropna(axis=1)
```
这将删除含有NaN值的列后的结果如下所示:
```
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
总之,使用dropna()方法可以在Python的pandas库中删除含有NaN值的行或列。通过设置参数axis=1,可以删除含有NaN值的列。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Python-pandas的dropna()方法-丢弃含空值的行、列](https://blog.csdn.net/xiao_yi_xiao/article/details/123502982)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [利用PythonPandas进行数据预处理-数据清洗](https://download.csdn.net/download/weixin_38722721/15448785)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
pythonpandas函数详解_Python pandas常用函数详解
Pandas 是一个强大的数据分析工具,提供了很多常用的函数来处理数据,下面是一些常用的函数及其用法:
1. read_csv():读取 CSV 文件并返回一个 DataFrame 对象。
2. head():返回 DataFrame 的前几行数据,默认为前 5 行。
3. tail():返回 DataFrame 的后几行数据,默认为后 5 行。
4. info():返回 DataFrame 的基本信息,包括每列的数据类型、非空值数量等。
5. describe():返回 DataFrame 的基本统计信息,包括计数、均值、标准差、最小值、最大值等。
6. shape:返回 DataFrame 的行数和列数。
7. columns:返回 DataFrame 的列名。
8. index:返回 DataFrame 的行索引。
9. loc[]:根据行标签和列标签访问 DataFrame 中的元素。
10. iloc[]:根据行索引和列索引访问 DataFrame 中的元素。
11. dropna():删除 DataFrame 中的缺失值。
12. fillna():用指定的值或方法填充 DataFrame 中的缺失值。
13. groupby():按照指定的列对 DataFrame 进行分组。
14. apply():对 DataFrame 的每一列应用指定的函数。
15. pivot_table():根据指定的列计算 DataFrame 的透视表。
16. merge():将两个 DataFrame 按照指定的列进行合并。
17. sort_values():按照指定的列对 DataFrame 进行排序。
18. drop_duplicates():去除 DataFrame 中的重复行。
19. value_counts():统计 DataFrame 中每个元素出现的次数。
20. isnull():判断 DataFrame 中的元素是否为空值。
这些函数覆盖了 Pandas 中的很多常用操作,掌握它们对于数据分析和处理非常有帮助。
阅读全文