LSTM代码 pytorch
时间: 2023-10-23 22:10:42 浏览: 106
LSTM是一种循环神经网络,它可以处理序列数据,并且在处理长序列时比传统的循环神经网络更有效。以下是基于pytorch实现的LSTM代码:
```python
import torch
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, batch_first=True):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=batch_first)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
return out
```
这个代码实现了一个单向的LSTM模型,其中包含了输入大小,隐藏层大小和层数等参数。在forward函数中,我们首先初始化了LSTM的初始隐藏状态和细胞状态,然后将输入x传递给LSTM模型,最后返回输出out。
如果需要实现双向LSTM,只需要将nn.LSTM替换为nn.LSTMBiDirectional即可。
阅读全文