手把手教你transformer
时间: 2023-10-17 17:07:06 浏览: 237
好的,关于 Transformer 的手把手教程,我可以给你一些简单的步骤:
1. 首先,你需要了解 Transformer 的基本结构和原理,包括 self-attention 机制、多头注意力机制等等。
2. 接着,你需要准备好数据集,并对数据进行预处理,包括分词、编码等等。
3. 然后,你需要搭建 Transformer 模型,包括输入层、编码器、解码器和输出层等等。
4. 在搭建模型的过程中,你需要注意一些细节问题,比如超参数的选择、模型的初始化、正则化等等。
5. 最后,你需要训练模型,并对模型进行评估和调优。
以上是一个简单的手把手教程,当然具体实现还需要根据具体情况进行调整和优化。如果你需要更详细的教程,可以参考一些开源的 Transformer 实现,比如 Google 的 Tensor2Tensor 和 OpenNMT 等等。
相关问题
手把手教你用python代码transformer
好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。
首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型:
1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。
2. 定义Transformer模型的编码器和解码器部分。
3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。
4. 实现残差连接(residual connection)和层归一化(layer normalization)。
5. 定义Transformer模型的训练和评估过程。
下面是一个简单的示例代码,用于实现一个基本的Transformer模型:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchtext.datasets import TranslationDataset, Multi30k
from torchtext.data import Field, BucketIterator
# 定义输入和输出的词汇表
SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True)
TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True)
# 加载数据集
train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG))
SRC.build_vocab(train_data, min_freq=2)
TRG.build_vocab(train_data, min_freq=2)
# 定义Transformer模型的编码器和解码器部分
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(1000, hid_dim)
self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, src, src_mask):
# src: [batch_size, src_len]
# src_mask: [batch_size, 1, 1, src_len]
batch_size = src.shape[0]
src_len = src.shape[1]
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
# pos: [batch_size, src_len]
src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos))
for layer in self.layers:
src = layer(src, src_mask)
return src
class EncoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
手把手教你用pytorch代码实现Transformer模型
以下是手把手教你用PyTorch代码实现Transformer模型的步骤:
1.导入必要的库和模块
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
```
2.定义Transformer模型的编码器和解码器
```python
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(1000, hid_dim)
self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)])
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, src, src_mask):
# src = [batch size, src len]
# src_mask = [batch size, 1, 1, src len]
batch_size = src.shape[0]
src_len = src.shape[1]
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos))
for layer in self.layers:
src = layer(src, src_mask)
return src
class EncoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
# src = [batch size, src len, hid dim]
# src_mask = [batch size, 1, 1, src len]
# self attention
_src, _ = self.self_attention(src, src, src, src_mask)
# dropout, residual connection and layer norm
src = self.self_attn_layer_norm(src + self.dropout(_src))
# positionwise feedforward
_src = self.positionwise_feedforward(src)
# dropout, residual and layer norm
src = self.ff_layer_norm(src + self.dropout(_src))
return src
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, device):
super().__init__()
assert hid_dim % n_heads == 0
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
Q = self.fc_q(query)
K = self.fc_k(key)
V = self.fc_v(value)
# Q = [batch size, query len, hid dim]
# K = [batch size, key len, hid dim]
# V = [batch size, value len, hid dim]
Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
# Q = [batch size, n heads, query len, head dim]
# K = [batch size, n heads, key len, head dim]
# V = [batch size, n heads, value len, head dim]
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
# energy = [batch size, n heads, query len, key len]
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = torch.softmax(energy, dim=-1)
# attention = [batch size, n heads, query len, key len]
x = torch.matmul(self.dropout(attention), V)
# x = [batch size, n heads, query len, head dim]
x = x.permute(0, 2, 1, 3).contiguous()
# x = [batch size, query len, n heads, head dim]
x = x.view(batch_size, -1, self.hid_dim)
# x = [batch size, query len, hid dim]
x = self.fc_o(x)
# x = [batch size, query len, hid dim]
return x, attention
class PositionwiseFeedforwardLayer(nn.Module):
def __init__(self, hid_dim, pf_dim, dropout):
super().__init__()
self.fc_1 = nn.Linear(hid_dim, pf_dim)
self.fc_2 = nn.Linear(pf_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# x = [batch size, seq len, hid dim]
x = self.dropout(torch.relu(self.fc_1(x)))
# x = [batch size, seq len, pf dim]
x = self.fc_2(x)
# x = [batch size, seq len, hid dim]
return x
class Decoder(nn.Module):
def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
self.pos_embedding = nn.Embedding(1000, hid_dim)
self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)])
self.fc_out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, 1, trg len, trg len]
# src_mask = [batch size, 1, 1, src len]
batch_size = trg.shape[0]
trg_len = trg.shape[1]
pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device)
trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos))
for layer in self.layers:
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
output = self.fc_out(trg)
return output, attention
class DecoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.enc_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len, hid dim]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, 1, trg len, trg len]
# src_mask = [batch size, 1, 1, src len]
# self attention
_trg, _ = self.self_attention(trg, trg, trg, trg_mask)
# dropout, residual connection and layer norm
trg = self.self_attn_layer_norm(trg + self.dropout(_trg))
# encoder attention
_trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask)
# dropout, residual connection and layer norm
trg = self.enc_attn_layer_norm(trg + self.dropout(_trg))
# positionwise feedforward
_trg = self.positionwise_feedforward(trg)
# dropout, residual and layer norm
trg = self.ff_layer_norm(trg + self.dropout(_trg))
return trg, attention
```
3.定义完模型后,我们需要定义一些辅助函数,如下所示:
```python
def get_pad_mask(seq, pad_idx):
return (seq != pad_idx).unsqueeze(-2)
def get_subsequent_mask(seq):
sz_b, len_s = seq.size()
subsequent_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
return subsequent_mask
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def greedy_decode(model, src, src_mask, max_len, start_symbol):
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
for i in range(max_len - 1):
out = model.decode(memory, src_mask, ys, subsequent_mask)
prob = model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.item()
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
if next_word == 2:
break
return ys
```
4.定义完辅助函数后,我们需要定义完整的Transformer模型,如下所示:
```python
class Transformer(nn.Module):
def __init__(self, src_vocab, trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=100):
super().__init__()
self.device = device
self.src_vocab = src_vocab
self.trg_vocab = trg_vocab
self.hid_dim = hid_dim
self.n_layers = n_layers
self.n_heads = n_heads
self.pf_dim = pf_dim
self.dropout = dropout
self.max_length = max_length
self.encoder = Encoder(src_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device)
self.decoder = Decoder(trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device)
self.src_pad_idx = src_vocab.stoi['<pad>']
self.trg_pad_idx = trg_vocab.stoi['<pad>']
self.device = device
def make_src_mask(self, src):
# src = [batch size, src len]
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
# src_mask = [batch size, 1, 1, src len]
return src_mask
def make_trg_mask(self, trg):
# trg = [batch size, trg len]
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
# trg_pad_mask = [batch size, 1, 1, trg len]
trg_len = trg.shape[1]
trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=self.device)).bool()
# trg_sub_mask = [trg len, trg len]
trg_mask = trg_pad_mask & trg_sub_mask
# trg_mask = [batch size, 1, trg len, trg len]
return trg_mask
def forward(self, src, trg):
# src = [batch size, src len]
# trg = [batch size, trg len]
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
return output, attention
def encode(self, src, src_mask):
# src = [batch size, src len]
# src_mask = [batch size, 1, 1, src len]
enc_src = self.encoder(src, src_mask)
return enc_src
def decode(self, memory, src_mask, trg, trg_mask):
# memory = [batch size, src len, hid dim]
# src_mask = [batch size, 1, 1, src len]
# trg = [batch size, trg
阅读全文