手把手教你transformer

时间: 2023-10-17 17:07:06 浏览: 237
好的,关于 Transformer 的手把手教程,我可以给你一些简单的步骤: 1. 首先,你需要了解 Transformer 的基本结构和原理,包括 self-attention 机制、多头注意力机制等等。 2. 接着,你需要准备好数据集,并对数据进行预处理,包括分词、编码等等。 3. 然后,你需要搭建 Transformer 模型,包括输入层、编码器、解码器和输出层等等。 4. 在搭建模型的过程中,你需要注意一些细节问题,比如超参数的选择、模型的初始化、正则化等等。 5. 最后,你需要训练模型,并对模型进行评估和调优。 以上是一个简单的手把手教程,当然具体实现还需要根据具体情况进行调整和优化。如果你需要更详细的教程,可以参考一些开源的 Transformer 实现,比如 Google 的 Tensor2Tensor 和 OpenNMT 等等。
相关问题

手把手教你用python代码transformer

好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。 首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型: 1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。 2. 定义Transformer模型的编码器和解码器部分。 3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。 4. 实现残差连接(residual connection)和层归一化(layer normalization)。 5. 定义Transformer模型的训练和评估过程。 下面是一个简单的示例代码,用于实现一个基本的Transformer模型: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.datasets import TranslationDataset, Multi30k from torchtext.data import Field, BucketIterator # 定义输入和输出的词汇表 SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True) TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True) # 加载数据集 train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG)) SRC.build_vocab(train_data, min_freq=2) TRG.build_vocab(train_data, min_freq=2) # 定义Transformer模型的编码器和解码器部分 class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src: [batch_size, src_len] # src_mask: [batch_size, 1, 1, src_len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) # pos: [batch_size, src_len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask):

手把手教你用pytorch代码实现Transformer模型

以下是手把手教你用PyTorch代码实现Transformer模型的步骤: 1.导入必要的库和模块 ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F ``` 2.定义Transformer模型的编码器和解码器 ```python class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src = [batch size, src len] # src_mask = [batch size, 1, 1, src len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): # src = [batch size, src len, hid dim] # src_mask = [batch size, 1, 1, src len] # self attention _src, _ = self.self_attention(src, src, src, src_mask) # dropout, residual connection and layer norm src = self.self_attn_layer_norm(src + self.dropout(_src)) # positionwise feedforward _src = self.positionwise_feedforward(src) # dropout, residual and layer norm src = self.ff_layer_norm(src + self.dropout(_src)) return src class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device) def forward(self, query, key, value, mask=None): batch_size = query.shape[0] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) # Q = [batch size, query len, hid dim] # K = [batch size, key len, hid dim] # V = [batch size, value len, hid dim] Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # Q = [batch size, n heads, query len, head dim] # K = [batch size, n heads, key len, head dim] # V = [batch size, n heads, value len, head dim] energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale # energy = [batch size, n heads, query len, key len] if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim=-1) # attention = [batch size, n heads, query len, key len] x = torch.matmul(self.dropout(attention), V) # x = [batch size, n heads, query len, head dim] x = x.permute(0, 2, 1, 3).contiguous() # x = [batch size, query len, n heads, head dim] x = x.view(batch_size, -1, self.hid_dim) # x = [batch size, query len, hid dim] x = self.fc_o(x) # x = [batch size, query len, hid dim] return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # x = [batch size, seq len, hid dim] x = self.dropout(torch.relu(self.fc_1(x))) # x = [batch size, seq len, pf dim] x = self.fc_2(x) # x = [batch size, seq len, hid dim] return x class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, 1, trg len, trg len] # src_mask = [batch size, 1, 1, src len] batch_size = trg.shape[0] trg_len = trg.shape[1] pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) output = self.fc_out(trg) return output, attention class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len, hid dim] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, 1, trg len, trg len] # src_mask = [batch size, 1, 1, src len] # self attention _trg, _ = self.self_attention(trg, trg, trg, trg_mask) # dropout, residual connection and layer norm trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) # encoder attention _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) # dropout, residual connection and layer norm trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) # positionwise feedforward _trg = self.positionwise_feedforward(trg) # dropout, residual and layer norm trg = self.ff_layer_norm(trg + self.dropout(_trg)) return trg, attention ``` 3.定义完模型后,我们需要定义一些辅助函数,如下所示: ```python def get_pad_mask(seq, pad_idx): return (seq != pad_idx).unsqueeze(-2) def get_subsequent_mask(seq): sz_b, len_s = seq.size() subsequent_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() return subsequent_mask def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def greedy_decode(model, src, src_mask, max_len, start_symbol): memory = model.encode(src, src_mask) ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data) for i in range(max_len - 1): out = model.decode(memory, src_mask, ys, subsequent_mask) prob = model.generator(out[:, -1]) _, next_word = torch.max(prob, dim=1) next_word = next_word.item() ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1) if next_word == 2: break return ys ``` 4.定义完辅助函数后,我们需要定义完整的Transformer模型,如下所示: ```python class Transformer(nn.Module): def __init__(self, src_vocab, trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=100): super().__init__() self.device = device self.src_vocab = src_vocab self.trg_vocab = trg_vocab self.hid_dim = hid_dim self.n_layers = n_layers self.n_heads = n_heads self.pf_dim = pf_dim self.dropout = dropout self.max_length = max_length self.encoder = Encoder(src_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device) self.decoder = Decoder(trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device) self.src_pad_idx = src_vocab.stoi['<pad>'] self.trg_pad_idx = trg_vocab.stoi['<pad>'] self.device = device def make_src_mask(self, src): # src = [batch size, src len] src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) # src_mask = [batch size, 1, 1, src len] return src_mask def make_trg_mask(self, trg): # trg = [batch size, trg len] trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2) # trg_pad_mask = [batch size, 1, 1, trg len] trg_len = trg.shape[1] trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=self.device)).bool() # trg_sub_mask = [trg len, trg len] trg_mask = trg_pad_mask & trg_sub_mask # trg_mask = [batch size, 1, trg len, trg len] return trg_mask def forward(self, src, trg): # src = [batch size, src len] # trg = [batch size, trg len] src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) enc_src = self.encoder(src, src_mask) output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) return output, attention def encode(self, src, src_mask): # src = [batch size, src len] # src_mask = [batch size, 1, 1, src len] enc_src = self.encoder(src, src_mask) return enc_src def decode(self, memory, src_mask, trg, trg_mask): # memory = [batch size, src len, hid dim] # src_mask = [batch size, 1, 1, src len] # trg = [batch size, trg
阅读全文

相关推荐

zip

最新推荐

recommend-type

深度学习自然语言处理-Transformer模型

Transformer模型是深度学习自然语言处理领域的一个里程碑式创新,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它彻底摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而完全依赖...
recommend-type

transformer 入门 培训

【IBM Cognos Transformer 入门培训】 IBM Cognos Transformer 是一款强大的多维数据分析工具,主要用于构建和管理多维立方体,以支持复杂的商务智能报告和分析需求。通过使用Transformer,用户能够从原始数据中...
recommend-type

A Survey of Visual Transformers 2021.pdf

"视觉Transformer综述" 视觉Transformer是近年来计算机视觉领域中的一个热门研究方向,它借鉴了自然语言处理领域中的Transformer架构,应用于计算机视觉任务中。下面是视觉Transformer的相关知识点: 视觉...
recommend-type

IBM Cognos 10 Transformer

安装IBM Cognos 10 Transformer时,你需要确保系统满足最低的硬件和软件需求。安装过程包括下载安装包,运行安装程序,配置服务器连接,以及设置用户权限。配置过程中,需要正确指定Cognos Connection服务器的URL、...
recommend-type

若依管理存在任何文件读取漏洞检测系统,渗透测试.zip

若依管理存在任何文件读取漏洞检测系统,渗透测试若一管理系统发生任意文件读取若依管理系统存在任何文件读取免责声明使用本程序请自觉遵守当地法律法规,出现一切后果均与作者无关。本工具旨在帮助企业快速定位漏洞修复漏洞,仅限安全授权测试使用!严格遵守《中华人民共和国网络安全法》,禁止未授权非法攻击站点!由于作者用户欺骗造成的一切后果与关联。毒品用于非法一切用途,非法使用造成的后果由自己承担,与作者无关。食用方法python3 若依管理系统存在任意文件读取.py -u http://xx.xx.xx.xxpython3 若依管理系统存在任意文件读取.py -f url.txt
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。